No Arabic abstract
The production cross-sections of $Upsilon(1S)$, $Upsilon(2S)$ and $Upsilon(3S)$ mesons in proton-proton collisions at $sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 pm 11$ $rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $Upsilon$ mesons are reconstructed in the decay mode $Upsilontomu^{+}mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $Upsilon$ transverse momentum, $p_{rm T}$, and rapidity, $y$, over the range $0 < p_{rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.
The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Upsilon transverse momentum and rapidity, over the ranges p_T<15 GeV/c and 2.0<y<4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic.
The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -> mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT < 15 GeV/c and 2.0 < y < 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S)->mu+ mu-) = 2.29 {pm} 0.01 {pm} 0.10 -0.37 +0.19 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S)->mu+ mu-) = 0.562 {pm} 0.007 {pm} 0.023 -0.092 +0.048 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S)->mu+ mu-) = 0.283 {pm} 0.005 {pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.
The production of $mathit{Xi}_{cc}^{++}$ baryons in proton-proton collisions at a centre-of-mass energy of $sqrt{s}=13$ TeV is measured in the transverse-momentum range $4<p_mathrm{T}<15~mathrm{GeV}$/$c$ and the rapidity range $2.0<y<4.5$. The data used in this measurement correspond to an integrated luminosity of 1.7 $mathrm{fb}^{-1}$, recorded by the LHCb experiment during 2016. The ratio of the $mathit{Xi}_{cc}^{++}$ production cross-section times the branching fraction of the $mathit{Xi_{cc}^{++} to Lambda_{c}^{+} K^- pi^+ pi^+}$ decay relative to the prompt $mathit{Lambda_c^{+}}$ production cross-section is found to be $(2.22pm 0.27 pm 0.29)times 10^{-4}$, assuming the central value of the measured $mathit{Xi_{cc}^{++}}$ lifetime, where the first uncertainty is statistical and the second systematic.
Using a data sample corresponding to an integrated luminosity of $2.0,fb^{-1}$, collected by the LHCb experiment, the production of the $eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $sqrt{s}=13 text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0text{ GeV}}$. The cross-section for prompt production of $eta_c(1S)$ mesons relative to that of the $J/psi$ meson is measured using the ${pbar{p}}$ decay mode and is found to be ${sigma_{eta_c(1S)}/sigma_{J/psi} = 1.69 pm 0.15 pm 0.10 pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/psito p bar{p}}$ and ${eta_cto p bar{p}}$ decays. The prompt $eta_c(1S)$ production cross-section is determined to be ${sigma_{eta_c(1S)} = 1.26 pm 0.11pm 0.08 pm 0.14 ,mu b}$, where the last uncertainty includes that on the ${J/psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $eta_c(1S)$ and ${J/psi}$ states is measured to be ${mathcal{B}_{btoeta_c X}/mathcal{B}_{bto J/psi X} = 0.48 pm 0.03 pm 0.03 pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/psi to p bar{p}}$ and ${eta_cto p bar{p}}$ decays. The difference between the ${J/psi}$ and $eta_c(1S)$ masses is also determined to be ${113.0 pm 0.7 pm 0.1text{ MeV}}$, which is the most precise single measurement of this quantity to date.
A study is presented of central exclusive production of $Upsilon(nS)$ states, where the $Upsilon(nS)$ resonances decay to the $mu^+mu^-$ final state, using $pp$ collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range $2<y(Upsilon)<4.5$ where the muons are reconstructed in the pseudorapidity range $2<eta(mu^pm)<4.5$. The data sample corresponds to an integrated luminosity of 2.9 fb$^{-1}$ and was collected at centre-of-mass energies of $7$ TeV and $8$ TeV. The measured $Upsilon(1S)$ and $Upsilon(2S)$ production cross-sections are begin{eqnarray} sigma(pp to pUpsilon(1S)p) &=& 9.0 pm 2.1 pm 1.7textrm{ pb and} onumber sigma(pp to pUpsilon(2S)p) &=& 1.3 pm 0.8 pm 0.3textrm{ pb}, onumber end{eqnarray} where the first uncertainties are statistical and the second are systematic. The $Upsilon(1S)$ cross-section is also measured as a function of rapidity and is found to be in good agreement with Standard Model predictions. An upper limit is set at 3.4 pb at the 95% confidence level for the exclusive $Upsilon(3S)$ production cross-section, including possible contamination from $chi_b(3P)toUpsilon(3S)gamma$ decays.