No Arabic abstract
Let $mathscr{C}$ be a category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism and $(varphi_1, Z, varphi_2)$ is an (epic, monic) factorization of $varphi$ through $Z$, then $varphi$ is core invertible if and only if $(varphi^{ast})^2varphi_1$ and $varphi_2varphi_1$ are both left invertible if and only if $((varphi^{ast})^2varphi_1, Z, varphi_2)$, $(varphi_2^{ast}, Z, varphi_1^{ast}varphi^{ast}varphi)$ and $(varphi^{ast}varphi_2^{ast}, Z, varphi_1^{ast}varphi)$ are all essentially unique (epic, monic) factorizations of $(varphi^{ast})^2varphi$ through $Z$. We also give the corresponding result about dual core inverse. In addition, we give some characterizations about the coexistence of core inverse and dual core inverse of an $R$-morphism in the category of $R$-modules of a given ring $R$.
Let $mathscr{C}$ be an additive category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism with kernel $kappa : K rightarrow X$ in $mathscr{C}$, then $varphi$ is core invertible if and only if $varphi$ has a cokernel $lambda: X rightarrow L$ and both $kappalambda$ and $varphi^{ast}varphi^3+kappa^{ast}kappa$ are invertible. In this case, we give the representation of the core inverse of $varphi$. We also give the corresponding result about dual core inverse.
Let R be a unital ring with involution, we give the characterizations and representations of the core and dual core inverses of an element in R by Hermitian elements (or projections) and units. For example, let a in R and n is an integer greater than or equal to 1, then a is core invertible if and only if there exists a Hermitian element (or a projection) p such that pa=0, a^n+p is invertible. As a consequence, a is an EP element if and only if there exists a Hermitian element (or a projection) p such that pa=ap=0, a^n+p is invertible. We also get a new characterization for both core invertible and dual core invertible of a regular element by units, and their expressions are shown. In particular, we prove that for n is an integer greater than or equal to 2, a is both Moore-Penrose invertible and group invertible if and only if (a*)^n is invertible along a.
In this paper, we introduce the notion of a (generalized) right core inverse and give its characterizations and expressions. Then, we provide the relation schema of (one-sided) core inverses, (one-sided) pseudo core inverses and EP elements.
$R$ is a unital ring with involution. We investigate the characterizations and representations of weighted core inverse of an element in $R$ by idempotents and units. For example, let $ain R$ and $ein R$ be an invertible Hermitian element, $ngeqslant 1$, then $a$ is $e$-core invertible if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $pa=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. As a consequence, let $e, fin R$ be two invertible Hermitian elements, then $a$ is weighted-$mathrm{EP}$ with respect to $(e, f)$ if and only if there exists an element (or an idempotent) $p$ such that $(ep)^{ast}=ep$, $(fp)^{ast}=fp$, $pa=ap=0$ and $a^{n}+p$ (or $a^{n}(1-p)+p$) is invertible. These results generalize and improve conclusions in cite{Li}.
In this paper, we present three limit representations of the core-EP inverse. The first approach is based on the full-rank decomposition of a given matrix. The second and third approaches, which depend on the explicit expression of the core-EP inverse, are established. The corresponding limit representations of the dual core-EP inverse are also given. In particular, limit representations of the core and dual core inverse are derived