Role of topology on the work distribution function of a quenched Haldane model of graphene


Abstract in English

We investigate the effect of equilibrium topology on the statistics of non-equilibrium work performed during the subsequent unitary evolution, following a sudden quench of the Semenoff mass of the Haldane model. We show that the resulting work distribution function for quenches performed on the Haldane Hamiltonian with broken time reversal symmetry (TRS) exhibits richer universal characteristics as compared to those performed on the time-reversal symmetric massive graphene limit whose work distribution function we have also evaluated for comparison. Importantly, our results show that the work distribution function exhibits different universal behaviors following the non-equilibrium dynamics of the system for small $phi$ (argument of complex next nearest neighbor hopping) and large $phi$ limits, although the two limits belong to the same equilibrium universality class.

Download