Do you want to publish a course? Click here

Non-neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping

73   0   0.0 ( 0 )
 Added by David Simpson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical bio-markers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the NV centre in nanodiamond has emerged as a promising candidate for bio-imaging and bio-sensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multi-electrode array (MEA) recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods 12-36 hr. The physiological validation motivates the second part of the study which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multi-functional intraneuronal sensors with nanoscale resolution, that may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.



rate research

Read More

There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a subcellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable zooming-in to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery.
The response kinetics of liquid crystalline phosphatidylcholine bilayer stacks to rapid, IR-laser induced temperature jumps has been studied by millisecond time-resolved x-ray diffraction. The system reacts on the fast temperature change by a discrete bilayer compression normal to its surface and a lateral bilayer expansion. Since water cannot diffuse from the excess phase into the interbilayer water region within the 2 ms duration of the laser pulse, the water layer has to follow the bilayer expansion, by an anomalous thinning. Structural analysis of a 20 ms diffraction pattern from the intermediate phase indicates that the bilayer thickness remains within the limits of isothermal equilibrium values. Both, the intermediate structure and its relaxation into the original equilibrium L_(alpha)-phase, depend on the visco-elastic properties of the bilayer/water system. We present an analysis of the relaxation process by an overdamped one-dimensional oscillation model revealing the concepts of Hookes law for phospholipid bilayers on a supramolecular basis. The results yield a constant bilayer repulsion and viscosity within Hookes regime suggesting that the hydrocarbon chains act as a buffer for the supplied thermal energy. The bilayer compression is a function of the initial temperature and the temperature amplitude, but is independent of the chain length.
Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in NMR and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require use of cryogens, large magnetic fields, and high power microwaves, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Indeed the realization of a miniature optical nanodiamond hyperpolarizer, where 13C nuclei are optically hyperpolarized has been a longstanding goal but has been technically challenging to achieve. Here, unravelling new physics underlying an optical DNP mechanism first introduced in [Ajoy et al., Sci. Adv. 4, eaar5492 (2018)], we report the realization of such a device in an ultracompact footprint and working fully at room temperature. Instrumental requirements are very modest: low polarizing fields, extremely low optical and microwave irradiation powers, and convenient frequency ranges that enable device miniaturization. We obtain best reported optical 13C hyperpolarization in diamond particles exceeding 720 times of the thermal 7T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in NMR averaging time. In addition the hyperpolarization signal can be background-suppressed by over two-orders of magnitude and retained for multiple-minute long periods. Besides compelling applications in quantum sensing, and bright-contrast MRI imaging, this work paves the way for low-cost DNP platforms that relay the 13C polarization to liquids in contact with the high surface-area particles. This will ultimately allow development of miniature quantum-assisted NMR spectrometers for chemical analysis.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of one second, opens a new pathway for in-situ nanoscale detection of dynamical processes in biology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا