Do you want to publish a course? Click here

Regularity results for the time-harmonic Maxwell equations with impedance boundary condition

88   0   0.0 ( 0 )
 Added by Yun Wang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

This paper considers the time-harmonic Maxwell equations with impedance boundary condition.We present $H^2$-norm bound and other high-order norm bounds for strong solutions. The $H^2$-estimate have been derived in [M. Dauge, M. Costabel and S. Nicaise, Tech. Rep. 10-09, IRMAR (2010)] for the case with homogeneous boundary condition. Unfortunately, their method can not be applied to the inhomogeneous case. The main novelty of this paper is that we follow the spirit of the $H^1$-estimate in [R. Hiptmair, A. Moiola and I. Perugia, Math. Models Methods Appl. Sci., 21(2011), pp. 2263-2287] and modify the proof by applying two inequalities of Friedrichs type to make the $H^1$-estimate move into $H^2$-estimate and $W^{m, p}$-estimate.Finally, the dependence of the regularity estimates on the wave number is obtained, which will play an important role in the convergence analysis of the numerical solutions for the time-harmonic Maxwell equations.



rate research

Read More

143 - Pedro Caro , Ting Zhou 2012
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity and the conductivity, are described by continuously differentiable functions.
119 - Stephane Mischler 2010
We prove global stability results of {sl DiPerna-Lions} renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darroz`es-Guiraud information in a crucial way.
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
126 - Hongjie Dong , Xumin Gu 2013
We consider suitable weak solutions of the incompressible Navier--Stokes equations in two cases: the 4D time-dependent case and the 6D stationary case. We prove that up to the boundary, the two-dimensional Hausdorff measure of the set of singular points is equal to zero in both cases.
We establish several boundary $varepsilon$-regularity criteria for suitable weak solutions for the 3D incompressible Navier-Stokes equations in a half cylinder with the Dirichlet boundary condition on the flat boundary. Our proofs are based on delicate iteration arguments and interpolation techniques. These results extend and provide alternative proofs for the earlier interior results by Vasseur [18], Choi-Vasseur [2], and Phuc-Guevara [6].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا