Do you want to publish a course? Click here

SOLIS IV. Hydrocarbons in the OMC-2 FIR 4 region, a probe of energetic particle irradiation of the region

93   0   0.0 ( 0 )
 Added by Cecile Favre
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new interferometric images of cyclopropenylidene, c-C$_3$H$_2$, towards the young protocluster OMC-2 FIR,4. The observations were performed at 82 and 85 GHz with the NOrthern Extended Millimeter Array (NOEMA) as part of the project Seeds Of Life In Space (SOLIS). In addition, IRAM-30m data observations were used to investigate the physical structure of OMC-2 FIR,4. We find that the c-C$_3$H$_2$ gas emits from the same region where previous SOLIS observations showed bright HC$_5$N emission. From a non-LTE analysis of the IRAM-30m data, the c-C$_3$H$_2$ gas has an average temperature of $sim$40K, a H$_2$ density of $sim$3$times$10$^{5}$~cm$^{-3}$, and a c-C$_3$H$_2$ abundance relative to H$_2$ of ($7pm1$)$times$10$^{-12}$. In addition, the NOEMA observations provide no sign of significant c-C$_3$H$_2$ excitation temperature gradients across the region (about 3-4 beams), with T$_{ex}$ in the range 8$pm$3 up to 16$pm$7K. We thus infer that our observations are inconsistent with a physical interaction of the OMC-2 FIR,4 envelope with the outflow arising from OMC-2 FIR,3, as claimed by previous studies. The comparison of the measured c-C$_3$H$_2$ abundance with the predictions from an astrochemical PDR model indicates that OMC-2 FIR,4 is irradiated by a FUV field $sim$1000 times larger than the interstellar one, and by a flux of ionising particles $sim$4000 times larger than the canonical value of $1times10^{-17}$~s$^{-1}$ from the Galaxy cosmic rays, which is consistent with our previous HC$_5$N observations. This provides an important and independent confirmation of other studies that one or more sources inside the OMC-2 FIR,4 region emit energetic ($geq10$~MeV) particles.



rate research

Read More

We use mid-infrared to submillimeter data from the Spitzer, Herschel, and APEX telescopes to study the bright sub-mm source OMC-2 FIR 4. We find a point source at 8, 24, and 70 $mu$m, and a compact, but extended source at 160, 350, and 870 $mu$m. The peak of the emission from 8 to 70 $mu$m, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 Lsun, although including more extended emission surrounding the point source raises this value to 86 Lsun. Radiative transfer models of the protostellar system fit the observed SED well and yield a total luminosity of most likely less than 100 Lsun. Our models suggest that the bolometric luminosity of the protostar could be just 12-14 Lsun, while the luminosity of the colder (~ 20 K) extended core could be around 100 Lsun, with a mass of about 27 Msun. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 Lsun (Crimier et al 2009). Furthermore, we find evidence from far-infrared molecular spectra (Kama et al. 2013, Manoj et al. 2013) and 3.6 cm emission (Reipurth et al 1999) that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.
95 - A. Hacar , J. Alves , M. Tafalla 2017
We have investigated the global dynamical state of the Integral Shaped Filament in the Orion A cloud using new N$_2$H$^+$ (1-0) large-scale, IRAM30m observations. Our analysis of its internal gas dynamics reveals the presence of accelerated motions towards the Orion Nebula Cluster, showing a characteristic blue-shifted profile centred at the position of the OMC-1 South region. The properties of these observed gas motions (profile, extension, and magnitude) are consistent with the expected accelerations for the gravitational collapse of the OMC-1 region and explain both the physical and kinematic structure of this cloud.
We present ALMA CO ($J$=2--1) and 1.3 mm continuum observations of the high-velocity jet associated with the FIR 6b protostar located in the Orion Molecular Cloud-2. We detect a velocity gradient along the short axis of the jet in both the red- and blue-shifted components. The position-velocity diagrams along the short axis of the red-shifted jet show a typical characteristic of a rotating cylinder. We attribute the velocity gradient in the red-shifted component to rotation of the jet. The rotation velocity ($>20, rm{km s^{-1}}$) and specific angular momentum ($>10^{22}, rm{cm^{2}, s^{-1}}$) of the jet around FIR 6b are the largest among all jets in which rotation has been observed. By combining disk wind theory with our observations, the jet launching radius is estimated to be in the range of $2.18-2.96$,au. The rapid rotation, large specific angular momentum, and a launching radius far from the central protostar can be explained by a magnetohydrodynamic disk wind that contributes to the angular momentum transfer in the late stages of protostellar accretion.
The early stages of low-mass star formation are likely to be subject to intense ionization by protostellar energetic MeV particles. As a result, the surrounding gas is enriched in molecular ions, such as HCO$^{+}$ and N$_{2}$H$^{+}$. Nonetheless, this phenomenon remains poorly understood for Class 0 objects. Recently, based on Herschel observations taken as part of the key program Chemical HErschel Surveys of Star forming regions (CHESS), a very low HCO$^{+}$/N$_{2}$H$^{+}$ abundance ratio of about 3-4, has been reported toward the protocluster OMC-2 FIR4. This finding suggests a cosmic-ray ionization rate in excess of 10$^{-14}$ s$^{-1}$, much higher than the canonical value of $zeta$ = 3$times$10$^{-17}$ s$^{-1}$ (value expected in quiescent dense clouds). To assess the specificity of OMC-2 FIR4, we have extended this study to a sample of sources in low- and intermediate mass. More specifically, we seek to measure the HCO$^{+}$/N$_2$H$^{+}$ abundance ratio from high energy lines (J $ge$ 6) toward this source sample in order to infer the flux of energetic particles in the warm and dense gas surrounding the protostars. We use observations performed with the Heterodyne Instrument for the FarInfrared spectrometer on board the Herschel Space Observatory toward a sample of 9 protostars. We report HCO$^{+}$/N$_2$H$^{+}$ abundance ratios in the range of 5 up to 73 toward our source sample. The large error bars do not allow us to conclude whether OMC-2~FIR4 is a peculiar source. Nonetheless, an important result is that the measured HCO$^{+}$/N$_2$H$^{+}$ ratio does not vary with the source luminosity. At the present time, OMC-2 FIR4 remains the only source where a high flux of energetic particles is clearly evident. More sensitive and higher angular resolution observations are required to further investigate this process.
We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free-free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet presents several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ~7,500-12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ~ 100 km/s. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario where the formation of HOPS 108 has been triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 presents a large proper motion velocity of ~ 30 km/s, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and /or opacity effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا