Do you want to publish a course? Click here

Quantum control of surface acoustic wave phonons

255   0   0.0 ( 0 )
 Added by Kevin Satzinger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The superposition of quantum states is one of the hallmarks of quantum physics, and clear demonstrations of superposition have been achieved in a number of quantum systems. However, mechanical systems have remained a challenge, with only indirect demonstrations of mechanical state superpositions, in spite of the intellectual appeal and technical utility such a capability would bring. This is due in part to the highly linear response of most mechanical systems, making quantum operation difficult, as well as their characteristically low frequencies, making it difficult to reach the quantum ground state. In this work, we demonstrate full quantum control of the mechanical state of a macroscopic mechanical resonator. We strongly couple a surface acoustic wave resonator to a superconducting qubit, using the qubit to control and measure quantum states in the mechanical resonator. Most notably, we generate a quantum superposition of the zero and one phonon states and map this and other states using Wigner tomography. This precise, programmable quantum control is essential to a range of applications of surface acoustic waves in the quantum limit, including using surface acoustic waves to couple disparate quantum systems.



rate research

Read More

Exploiting multiple modes in a quantum acoustic device could enable applications in quantum information in a hardware-efficient setup, including quantum simulation in a synthetic dimension and continuous-variable quantum computing with cluster states.We develop a multimode surface acoustic wave (SAW) resonator with a superconducting quantum interference device (SQUID) integrated in one of the Bragg reflectors. The interaction with the SQUID-shunted mirror gives rise to coupling between the more than 20 accessible resonator modes. We exploit this coupling to demonstrate two-mode squeezing of SAW phonons, as well as four-mode multipartite entanglement. Our results open avenues for continuous-variable quantum computing in a compact hybrid quantum system.
Using the deterministic, on-demand generation of two entangled phonons, we demonstrate a quantum eraser protocol in a phononic interferometer where the which-path information can be heralded during the interference process. Omitting the heralding step yields a clear interference pattern in the interfering half-quanta pathways; including the heralding step suppresses this pattern. If we erase the heralded information after the interference has been measured, the interference pattern is recovered, thereby implementing a delayed-choice quantum erasure. The test is implemented using a closed surface-acoustic-wave communication channel into which one superconducting qubit can emit itinerant phonons that the same or a second qubit can later re-capture. If the first qubit releases only half of a phonon, the system follows a superposition of paths during the phonon propagation: either an itinerant phonon is in the channel, or the first qubit remains in its excited state. These two paths are made to constructively or destructively interfere by changing the relative phase of the two intermediate states, resulting in a phase-dependent modulation of the first qubits final state, following interaction with the half-phonon. A heralding mechanism is added to this construct, entangling a heralding phonon with the signalling phonon. The first qubit emits a phonon herald conditioned on the qubit being in its excited state, with no signaling phonon, and the second qubit catches this heralding phonon, storing which-path information which can either be read out, destroying the signaling phonons self-interference, or erased.
Electromagnetic fields carry momentum, which upon reflection on matter gives rise to the radiation pressure of photons. The radiation pressure has recently been utilized in cavity optomechanics for controlling mechanical motions of macroscopic objects at the quantum limit. However, because of the weakness of the interaction, attempts so far had to use a strong coherent drive to reach the quantum limit Therefore, the single-photon quantum regime, where even the presence of a totally off-resonant single photon alters the quantum state of the mechanical mode significantly, is one of the next milestones in cavity optomechanics. Here we demonstrate an artificial realization of the radiation pressure of microwave photons acting on phonons in a surface acoustic wave resonator. The order-of-magnitude enhancement of the interaction strength originates in the well-tailored strong second-order nonlinearity of a superconducting Josephson-junction circuit. The synthetic radiation pressure interaction adds a key element to the quantum optomechanical toolbox and can be applied to quantum information interfaces between electromagnetic and mechanical degrees of freedom.
148 - Meg Mahat 2011
We demonstrate the modification of coherent zone-folded longitudinal acoustic phonons (ZFLAPs) oscillations in InGaN/GaN multiple quantum wells by the inclusion of metal nanoparticles (Au and Ag) via self-assembled inverted hexagonal pits. Blueshift and redshift have been observed in photoluminescence spectra due to the effect of electrostatic charge of metal nanoparticles (NPs). A change in periodicity of ZFLAPs oscillations were demonstrated due to the metal NPs inserted in the material system.
Quantum states of mechanical motion can be important resources for quantum information, metrology, and studies of fundamental physics. Recent demonstrations of superconducting qubits coupled to acoustic resonators have opened up the possibility of performing quantum operations on macroscopic motional modes, which can act as long-lived quantum memories or transducers. In addition, they can potentially be used to test for novel decoherence mechanisms in macroscopic objects and other modifications to standard quantum theory. Many of these applications call for the ability to create and characterize complex quantum states, putting demanding requirements on the speed of quantum operations and the coherence of the mechanical mode. In this work, we demonstrate the controlled generation of multi-phonon Fock states in a macroscopic bulk-acoustic wave resonator. We also perform Wigner tomography and state reconstruction to highlight the quantum nature of the prepared states. These demonstrations are made possible by the long coherence times of our acoustic resonator and our ability to selectively couple to individual phonon modes. Our work shows that circuit quantum acousto-dynamics (circuit QAD) enables sophisticated quantum control of macroscopic mechanical objects and opens the door to using acoustic modes as novel quantum resources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا