Do you want to publish a course? Click here

Randomized opinion dynamics over networks: influence estimation from partial observations

45   0   0.0 ( 0 )
 Added by Sarah Hojjatinia
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a technique for the estimation of the influence matrix in a sparse social network, in which $n$ individual communicate in a gossip way. At each step, a random subset of the social actors is active and interacts with randomly chosen neighbors. The opinions evolve according to a Friedkin and Johnsen mechanism, in which the individuals updates their belief to a convex combination of their current belief, the belief of the agents they interact with, and their initial belief, or prejudice. Leveraging recent results of estimation of vector autoregressive processes, we reconstruct the social network topology and the strength of the interconnections starting from textit{partial observations} of the interactions, thus removing one of the main drawbacks of finite horizon techniques. The effectiveness of the proposed method is shown on randomly generation networks.



rate research

Read More

We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.
390 - Liubov Tupikina 2017
Here we developed a new conceptual, stochastic Heterogeneous Opinion-Status model (HOpS model), which is adaptive network model. The HOpS model admits to identify the main attributes of dynamics on networks and to study analytically the relation between topological network properties and processes taking place on a network. Another key point of the HOpS model is the possibility to study network dynamics via the novel parameter of heterogeneity. We show that not only clear topological network properties, such as node degree, but also, the nodes status distribution (the factor of network heterogeneity) play an important role in so-called opinion spreading and information diffusion on a network. This model can be potentially used for studying the co-evolution of globally aggregated or averaged key observables of the earth system. These include natural variables such as atmospheric, oceanic and land carbon stocks, as well as socio-economic quantities such as global human population, economic production or wellbeing.
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the final configuration. Independent of network structures, there exists the optimal stubbornness of one subpopulation for the largest number of clusters and the highest entropy. Besides, there is the optimal bounded confidence (or subpopulation ratio) of one subpopulation for the smallest number of clusters and the lowest entropy. However, network structures affect cluster profiles indeed. A large average degree favors consensus for making different networks more similar with complete graphs. The network size has limited impact on cluster profiles of heterogeneous populations on scale-free networks but has significant effects upon those on small-world networks.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
To model the interdependent couplings of multiple topics, we develop a set of rules for opinion updates of a group of agents. The rules are used to design or assign values to the elements of interdependent weighting matrices. The cooperative and anti-cooperative couplings are modeled in both the inverse-proportional and proportional feedbacks. The behaviors of cooperative opinion dynamics are analyzed using a null space property of state-dependent matrix-weighted Laplacian matrices and a Lyapunov candidate. Various consensus properties of state-dependent matrix-weighted Laplacian matrices are predicted according to the intra-agent network topology and inter-dependency topical coupling topologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا