Improved Bounds for Guarding Plane Graphs with Edges


Abstract in English

An edge guard set of a plane graph $G$ is a subset $Gamma$ of edges of $G$ such that each face of $G$ is incident to an endpoint of an edge in $Gamma$. Such a set is said to guard $G$. We improve the known upper bounds on the number of edges required to guard any $n$-vertex embedded planar graph $G$: 1- We present a simple inductive proof for a theorem of Everett and Rivera-Campo (1997) that $G$ can be guarded with at most $ frac{2n}{5}$ edges, then extend this approach with a deeper analysis to yield an improved bound of $frac{3n}{8}$ edges for any plane graph. 2- We prove that there exists an edge guard set of $G$ with at most $frac{n}{3}+frac{alpha}{9}$ edges, where $alpha$ is the number of quadrilateral faces in $G$. This improves the previous bound of $frac{n}{3} + alpha$ by Bose, Kirkpatrick, and Li (2003). Moreover, if there is no short path between any two quadrilateral faces in $G$, we show that $frac{n}{3}$ edges suffice, removing the dependence on $alpha$.

Download