Do you want to publish a course? Click here

Consistent CCG Parsing over Multiple Sentences for Improved Logical Reasoning

96   0   0.0 ( 0 )
 Added by Masashi Yoshikawa
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In formal logic-based approaches to Recognizing Textual Entailment (RTE), a Combinatory Categorial Grammar (CCG) parser is used to parse input premises and hypotheses to obtain their logical formulas. Here, it is important that the parser processes the sentences consistently; failing to recognize a similar syntactic structure results in inconsistent predicate argument structures among them, in which case the succeeding theorem proving is doomed to failure. In this work, we present a simple method to extend an existing CCG parser to parse a set of sentences consistently, which is achieved with an inter-sentence modeling with Markov Random Fields (MRF). When combined with existing logic-based systems, our method always shows improvement in the RTE experiments on English and Japanese languages.

rate research

Read More

Logical reasoning, which is closely related to human cognition, is of vital importance in humans understanding of texts. Recent years have witnessed increasing attentions on machines logical reasoning abilities. However, previous studies commonly apply ad-hoc methods to model pre-defined relation patterns, such as linking named entities, which only considers global knowledge components that are related to commonsense, without local perception of complete facts or events. Such methodology is obviously insufficient to deal with complicated logical structures. Therefore, we argue that the natural logic units would be the group of backbone constituents of the sentence such as the subject-verb-object formed facts, covering both global and local knowledge pieces that are necessary as the basis for logical reasoning. Beyond building the ad-hoc graphs, we propose a more general and convenient fact-driven approach to construct a supergraph on top of our newly defined fact units, and enhance the supergraph with further explicit guidance of local question and option interactions. Experiments on two challenging logical reasoning benchmark datasets, ReClor and LogiQA, show that our proposed model, textsc{Focal Reasoner}, outperforms the baseline models dramatically. It can also be smoothly applied to other downstream tasks such as MuTual, a dialogue reasoning dataset, achieving competitive results.
We propose a new A* CCG parsing model in which the probability of a tree is decomposed into factors of CCG categories and its syntactic dependencies both defined on bi-directional LSTMs. Our factored model allows the precomputation of all probabilities and runs very efficiently, while modeling sentence structures explicitly via dependencies. Our model achieves the state-of-the-art results on English and Japanese CCG parsing.
Identifying mathematical relations expressed in text is essential to understanding a broad range of natural language text from election reports, to financial news, to sport commentaries to mathematical word problems. This paper focuses on identifying and understanding mathematical relations described within a single sentence. We introduce the problem of Equation Parsing -- given a sentence, identify noun phrases which represent variables, and generate the mathematical equation expressing the relation described in the sentence. We introduce the notion of projective equation parsing and provide an efficient algorithm to parse text to projective equations. Our system makes use of a high precision lexicon of mathematical expressions and a pipeline of structured predictors, and generates correct equations in $70%$ of the cases. In $60%$ of the time, it also identifies the correct noun phrase $rightarrow$ variables mapping, significantly outperforming baselines. We also release a new annotated dataset for task evaluation.
223 - Yanyan Zou , Wei Lu 2018
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
139 - Yinya Huang , Meng Fang , Yu Cao 2021
Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا