Do you want to publish a course? Click here

MultiDark-Clusters: Galaxy Cluster Mock Light-Cones, eROSITA and the Cluster Power Spectrum

62   0   0.0 ( 0 )
 Added by Fabio Zandanel
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological simulations are fundamental tools to study structure formation and the astrophysics of evolving structures, in particular clusters of galaxies. While hydrodynamical simulations cannot sample efficiently large volumes and explore different cosmologies at the same time, N-body simulations lack the baryonic physics that is crucial to determine the observed properties of clusters. One solution is to use (semi-)analytical models to implement the needed baryonic physics. In this way, we can generate the many mock universes that will be required to fully exploit future large sky surveys, such as that from the upcoming eROSITA X-ray telescope. We developed a phenomenological model based on observations of clusters to implement gas density and temperature information on the dark-matter-only halos of the MultiDark simulations. We generate several full-sky mock light-cones of clusters for the WMAP and Planck cosmologies, adopting different parameters in our phenomenological model of the intra-cluster medium. For one of these simulations and models, we also generate 100 light-cones corresponding to 100 random observers and explore the variance among them in several quantities. In this first paper on MultiDark mock galaxy cluster light-cones, we focus on presenting our methodology and discuss predictions for eROSITA, in particular, exploring the potential of angular power spectrum analyses of its detected (and undetected) cluster population to study X-ray scaling relations, the intra-cluster medium, and the composition of the cosmic X-ray background. We make publicly available on-line more than 400 GB of light-cones, which include the expected eROSITA count rate, on Skies & Universes (http://www.skiesanduniverses.org).



rate research

Read More

One key ingredient in using galaxy clusters (GCs) as a precision cosmological probe in large X-ray surveys is to understand selection effects. The dependence of the X-ray emission on the square of the gas density leads to a predominant role of cool cores in the detection of GCs. The contribution of cool cores to the X-ray luminosity does not scale with GC mass and cosmology and therefore affects the use of X-ray GCs in producing cosmological constraints. One of the main science goals of the eROSITA mission is to constrain cosmology with a wide X-ray survey. We propose an eROSITA GC detection scheme that avoids the use of X-ray GC centers in detection. We calculate theoretical expectations and characterize the performance of this scheme by simulations. Performing realistic simulations of point sources (PSs) in survey mode we search for spatial scales where the extended signal is uncontaminated by the PS flux. We derive a combination of scales and thresholds, which result in a clean extended source catalog. We design the output of the GC detection which enables calibrating the core-excised luminosity using external mass measurements. We provide a way to incorporate the results of this calibration in the production of final core-excised luminosity. Similarly to other GC detection pipelines, we sample the flux - core radius detection space of our method and find many similarities with the pipeline used in the 400d survey. Both detection methods require large statistics on compact GCs, in order to reduce the contamination from PSs. The benefit of our pipeline consists in the sensitivity to the outer GC shapes, which are characterized by large core sizes with little GC to GC variation at a fixed total mass. GC detection through cluster outskirts improves the GC characterization using eROSITA survey data and is expected to yield well characterized GC catalogs having simple selection functions.
80 - J. A. ZuHone 2016
We present the Galaxy Cluster Merger Catalog. This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers and clusters from cosmological simulations. These mock observations consist of projections of a number of important observable quantities in several different wavebands as well as along different lines of sight through each simulation domain. The web interface to the catalog consists of easily browseable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. The data is presented within a consistent format so that comparison between simulations is straightforward. All of the data products are provided in the standard FITS file format. Data is being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Futu
The X-ray telescope eROSITA onboard the newly launched SRG mission serendipitously observed the galaxy cluster A3408 ($z=0.0420$) during the PV observation of the AGN 1H0707-495. Despite its brightness and large extent, it has not been observed by any modern X-ray observatory. A neighbouring cluster in NW direction, A3407 ($z=0.0428$), appears to be close at least in projection ($sim 1.7$ Mpc). This cluster pair could be in a pre- or post-merger state. We perform a detailed X-ray analysis of A3408. We construct particle background subtracted and exposure corrected images and surface brightness profiles in different sectors. The spectral analysis is performed out to $1.4r_{500}$. Additionally, a temperature map is presented depicting the distribution of the ICM temperature. Furthermore, we make use of data from the RASS to estimate some bulk properties of A3408 and A3407, using the growth curve analysis method and scaling relations. The imaging analysis shows a complex morphology of A3408 with a strong elongation in SE-NW direction. This is quantified by comparing the surface brightness profiles of the NW, SW, SE and NE directions, where the NW and SE directions show a significantly higher surface brightness compared to the other directions. We determine a gas temperature ${rm k_B}T_{500}=(2.23pm0.09)$ keV. The T-profile reveals a hot core within $2$ of the emission peak, ${rm k_B}T=3.04^{+0.29}_{-0.25}$ keV. Employing a M-T relation, we obtain $M_{500}=(9.27pm0.75)times 10^{13}M_{odot}$ iteratively. The $r_{200}$ of A3407 and A3408 are found to overlap in projection which makes ongoing interactions plausible. The 2d T-map reveals higher temperatures in W than in E direction. A3407 and A3408 are likely in a pre-merger state, affecting the ICM properties, i.e., increased temperatures in the direction of A3407 indicate adiabatic compression or shocks due to the interaction.
Groups and clusters of galaxies are a current focus of astronomical research owing to their role in determining the environmental effects on galaxies and the constraints they provide to cosmology. The eROSITA X-ray telescope on board the Spectrum Roentgen Gamma observatory will be launched in 2019 and will have completed eight scans of the full sky when 4MOST starts operating. The experiment will detect groups and clusters of galaxies through X-ray emission from the hot intergalactic medium. The purpose of the 4MOST eROSITA Galaxy Cluster Redshift Survey is to provide spectroscopic redshifts of the optical counterparts to the X-ray emission from 40,000 groups and clusters of galaxies so as to perform dynamical estimates of the total mass and to measure the properties of the member galaxies. The survey aims to obtain precise redshift measurements of the photometrically identified brightest cluster galaxies at redshift $z > 0.7$. At lower redshifts ($z < 0.7$), the programme aims to sample over 15 member galaxies per cluster and enable dynamical mass measurements to calibrate the clusters for cosmological experiments. At $z < 0.2$, eROSITA will also detect X-ray emission from galaxy groups and filaments. 4MOST spectroscopic data from the survey will be used for optical identification of galaxy groups down to eROSITAs mass detection limits of $10^{13} M_odot$, as well as the detection of the largest filaments for pioneering studies of their X-ray emission.
We describe the construction of a suite of galaxy cluster mock catalogues from N-body simulations, based on the properties of the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. Our procedure is based on the measurements of the cluster abundance, and involves the calibration of the underlying scaling relation linking the mass of dark matter haloes to the cluster X-ray luminosity determined in the emph{ROSAT} energy band $0.1-2.4$ keV. In order to reproduce the observed abundance in the luminosity range probed by the REFLEX II X-ray luminosity function ($0.01<L_{X}/(10^{44}{rm erg},{rm s}^{-1}h^{-2})<10$), a mass-X ray luminosity relation deviating from a simple power law is required. We discuss the dependence of the calibration of this scaling relation on the X-ray luminosity and the definition of halo masses and analyse the one- and two-point statistical properties of the mock catalogues. Our set of mock catalogues provides samples with self-calibrated scaling relations of galaxy clusters together with inherent properties of flux-limited surveys. This makes them a useful tool to explore different systematic effects and statistical methods involved in constraining both astrophysical and cosmological information from present and future galaxy cluster surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا