Do you want to publish a course? Click here

Cell Selection with Deep Reinforcement Learning in Sparse Mobile Crowdsensing

65   0   0.0 ( 0 )
 Added by Leye Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Sparse Mobile CrowdSensing (MCS) is a novel MCS paradigm where data inference is incorporated into the MCS process for reducing sensing costs while its quality is guaranteed. Since the sensed data from different cells (sub-areas) of the target sensing area will probably lead to diverse levels of inference data quality, cell selection (i.e., choose which cells of the target area to collect sensed data from participants) is a critical issue that will impact the total amount of data that requires to be collected (i.e., data collection costs) for ensuring a certain level of quality. To address this issue, this paper proposes a Deep Reinforcement learning based Cell selection mechanism for Sparse MCS, called DR-Cell. First, we properly model the key concepts in reinforcement learning including state, action, and reward, and then propose to use a deep recurrent Q-network for learning the Q-function that can help decide which cell is a better choice under a certain state during cell selection. Furthermore, we leverage the transfer learning techniques to reduce the amount of data required for training the Q-function if there are multiple correlated MCS tasks that need to be conducted in the same target area. Experiments on various real-life sensing datasets verify the effectiveness of DR-Cell over the state-of-the-art cell selection mechanisms in Sparse MCS by reducing up to 15% of sensed cells with the same data inference quality guarantee.



rate research

Read More

We propose a general and model-free approach for Reinforcement Learning (RL) on real robotics with sparse rewards. We build upon the Deep Deterministic Policy Gradient (DDPG) algorithm to use demonstrations. Both demonstrations and actual interactions are used to fill a replay buffer and the sampling ratio between demonstrations and transitions is automatically tuned via a prioritized replay mechanism. Typically, carefully engineered shaping rewards are required to enable the agents to efficiently explore on high dimensional control problems such as robotics. They are also required for model-based acceleration methods relying on local solvers such as iLQG (e.g. Guided Policy Search and Normalized Advantage Function). The demonstrations replace the need for carefully engineered rewards, and reduce the exploration problem encountered by classical RL approaches in these domains. Demonstrations are collected by a robot kinesthetically force-controlled by a human demonstrator. Results on four simulated insertion tasks show that DDPG from demonstrations out-performs DDPG, and does not require engineered rewards. Finally, we demonstrate the method on a real robotics task consisting of inserting a clip (flexible object) into a rigid object.
Currently, explosive increase of smartphones with powerful built-in sensors such as GPS, accelerometers, gyroscopes and cameras has made the design of crowdsensing applications possible, which create a new interface between human beings and life environment. Until now, various mobile crowdsensing applications have been designed, where the crowdsourcers can employ mobile users (MUs) to complete the required sensing tasks. In this paper, emerging learning-based techniques are leveraged to address crowdsensing game with demand uncertainties and private information protection of MUs. Firstly, a novel economic model for mobile crowdsensing is designed, which takes MUs resources constraints and demand uncertainties into consideration. Secondly, an incentive mechanism based on Stackelberg game is provided, where the sensing-platform (SP) is the leader and the MUs are the followers. Then, the existence and uniqueness of the Stackelberg Equilibrium (SE) is proven and the procedure for computing the SE is given. Furthermore, a dynamic incentive mechanism (DIM) based on deep reinforcement learning (DRL) approach is investigated without knowing the private information of the MUs. It enables the SP to learn the optimal pricing strategy directly from game experience without any prior knowledge about MUs information. Finally, numerical simulations are implemented to evaluate the performance and theoretical properties of the proposed mechanism and approach.
Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating reinforcement learning as a solution to the placement problem. We then give an overview of what deep reinforcement learning is. We next formulate the placement problem as a reinforcement learning problem and show how this problem can be solved with policy gradient optimization. Finally, we describe lessons we have learned from training deep reinforcement learning policies across a variety of placement optimization problems.
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
In mobile crowdsourcing (MCS), the platform selects participants to complete location-aware tasks from the recruiters aiming to achieve multiple goals (e.g., profit maximization, energy efficiency, and fairness). However, different MCS systems have different goals and there are possibly conflicting goals even in one MCS system. Therefore, it is crucial to design a participant selection algorithm that applies to different MCS systems to achieve multiple goals. To deal with this issue, we formulate the participant selection problem as a reinforcement learning problem and propose to solve it with a novel method, which we call auxiliary-task based deep reinforcement learning (ADRL). We use transformers to extract representations from the context of the MCS system and a pointer network to deal with the combinatorial optimization problem. To improve the sample efficiency, we adopt an auxiliary-task training process that trains the network to predict the imminent tasks from the recruiters, which facilitates the embedding learning of the deep learning model. Additionally, we release a simulated environment on a specific MCS task, the ride-sharing task, and conduct extensive performance evaluations in this environment. The experimental results demonstrate that ADRL outperforms and improves sample efficiency over other well-recognized baselines in various settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا