Compact model for Quarks and Leptons via flavored-Axions


Abstract in English

We show how the scales responsible for Peccei-Quinn (PQ), seesaw, and Froggatt and Nielsen (FN) mechanisms can be fixed, by constructing a compact model for resolving rather recent, but fast-growing issues in astro-particle physics, including quark and leptonic mixings and CP violations, high-energy neutrinos, QCD axion, and axion cooling of stars. The model is motivated by the flavored PQ symmetry for unifying the flavor physics and string theory. The QCD axion decay constant congruent to the seesaw scale, through its connection to the astro-particle constraints of both the stellar evolution induced by the flavored-axion bremsstrahlung off electrons $e+Zerightarrow Ze+e+A_i$ and the rare flavor-changing decay process induced by the flavored-axion $K^+rightarrowpi^++A_i$, is shown to be fixed at $F_A=3.56^{+0.84}_{-0.84}times10^{10}$ GeV (consequently, the QCD axion mass $m_a=1.54^{+0.48}_{-0.29}times10^{-4}$ eV, Compton wavelength of its oscillation $lambda_a=8.04^{+1.90}_{-1.90},{rm mm}$, and axion to neutron coupling $g_{Ann}=2.14^{+0.66}_{-0.41}times10^{-12}$, etc.). Subsequently, the scale associated to FN mechanism is dynamically fixed through its connection to the standard model fermion masses and mixings, $Lambda=2.04^{,+0.48}_{,-0.48}times10^{11},{rm GeV}$, and such fundamental scale might give a hint where some string moduli are stabilized in type-IIB string vacua. In the near future, the NA62 experiment expected to reach the sensitivity of ${rm Br}(K^+rightarrowpi^++A_i)<1.0times10^{-12}$ will probe the flavored-axions or exclude the model, if the astrophysical constraint of star cooling is really responsible for the flavored-axion.

Download