Do you want to publish a course? Click here

Generation of Anti-Stokes Fluorescence in a Strongly Coupled Organic Semiconductor Microcavity

450   0   0.0 ( 0 )
 Added by Kyriacos Georgiou
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the generation of anti-Stokes fluorescence from strongly coupled organic dye microcavities following resonant ground-state excitation. We observe polariton emission along the lower polariton branch, with our results indicating that this process involves a return to the exciton reservoir and the absorption of thermal energy from molecules in a vibrationally excited ground-state. We speculate that the generation of a population of hot polaritons is enhanced by the fact that the cavity supresses the emission of Stokes-shifted fluorescence, as it is located energetically below the cut-off frequency of the cavity.



rate research

Read More

186 - Yin Zhong , Lei Tan , Li-wei Liu 2009
We investigate the coherent transport of a single photon in coupled semiconductor microcavity waveguide,which can be controlled by in-plane excitons in quantum well embedded in the antinode of the electromagnetic field in one of the cavities. The reflection coefficient and transmissivity for the single photon propagating in this semiconductor waveguide are obtained. It is shown that the effect of the excitons decay plays an important role in the transport properties of the single photon in this microcavity waveguide if we refer to real systems.
Using a laterally-fabricated quantum-dot (QD) spin-valve device, we experimentally study the Kondo effect in the electron transport through a semiconductor QD with an odd number of electrons (N). In a parallel magnetic configuration of the ferromagnetic electrodes, the Kondo resonance at N = 3 splits clearly without external magnetic fields. With applying magnetic fields (B), the splitting is gradually reduced, and then the Kondo effect is almost restored at B = 1.2 T. This means that, in the Kondo regime, an inverse effective magnetic field of B ~ 1.2 T can be applied to the QD in the parallel magnetic configuration of the ferromagnetic electrodes.
96 - H. Popli , J. Wang , X. Liu 2021
We have experimentally tested the hypothesis of free charge carrier mediated spin-transport in the small molecule organic semiconductor Alq3 at room temperature. A spin current was pumped into this material by pulsed ferromagnetic resonance of an adjacent NiFe layer, while a charge current resulting from this spin current via the inverse spin-Hall effect (ISHE) was detected in a Pt layer adjacent on the other side of the Alq3 layer, confirming a pure spin current through the Alq3 layer. Charge carrier spin states in Alq3, were then randomized by simultaneous application of electron paramagnetic resonance (EPR). No influence of the EPR excitation on the ISHE current was found, implying that spin-transport is not mediated by free charge-carriers in Alq3.
From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site-sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet, quintet (S=1,2) configurations: this induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site-selectivity can be achieved for organic spin pairs in a broad range of systems.
Rephasing and non-rephasing two-dimensional coherent spectra map the anti-crossing associated with normal-mode splitting in a semiconductor microcavity. For a 12-meV detuning range near zero detuning, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the lineshape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton- and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated (and invert) at small positive detuning, as the lower polariton branch crosses the bound biexciton energy determined from negative detuning spectra.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا