No Arabic abstract
We study nonequilibrium steady states in a holographic superconductor under time periodic driving by an external rotating electric field. We obtain the dynamical phase diagram. Superconducting phase transition is of first or second order depending on the amplitude and frequency of the external source. The rotating electric field decreases the superconducting transition temperature. The system can also exhibit a first order transition inside the superconducting phase. It is suggested this transition exists all the way down to zero temperature. The existence of nonequilibrium thermodynamic potential for such steady solutions is also discussed from the holographic point of view. The current induced by the electric field is decomposed into normal and superconducting components, and this makes it clear that the superconducting one dominates in low temperatures.
We propose a new duality relation between codimension two space-like surfaces in gravitational theories and quantum states in dual Hilbert spaces. This surface/state correspondence largely generalizes the idea of holography such that we do not need to rely on any existence of boundaries in gravitational spacetimes. The present idea is motivated by the recent interpretation of AdS/CFT in terms of the tensor networks so called MERA. Moreover, we study this correspondence from the viewpoint of entanglement entropy and information metric. The Cramer-Rao bound in quantum estimation theory implies that the quantum fluctuations of radial coordinate of the AdS is highly suppressed in the large N limit.
We argue that a $SO(d)$ magnetic monopole in an asymptotically AdS space-time is dual to a $d$-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration $solidon$. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary$-$the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.
Negative magnetoresistivity is a special magnetotransport property associated with chiral anomaly in four dimensional chiral anomalous systems, which refers to the transport behavior that the DC longitudinal magnetoresistivity decreases with increasing magnetic field. We calculate the longitudinal magnetoconductivity in the presence of backreactions of the magnetic field to gravity in holographic zero charge and axial charge density systems with and without axial charge dissipation. In the absence of axial charge dissipation, we find that the quantum critical conductivity grows with increasing magnetic field when the backreaction strength is larger than a critical value, in contrast to the monotonically decreasing behavior of quantum critical conductivity in the probe limit. With axial charge dissipation, we find the negative magnetoresistivity behavior. The DC longitudinal magnetoconductivity scales as $B$ in the large magnetic field limit, which deviates from the exact $B^2$ scaling of the probe limit result. In both cases, the small frequency longitudinal magnetoconductivity still agrees with the formula obtained from the hydrodynamic linear response theory, even in the large magnetic field limit.
We study the spontaneous magnetization and the magnetic hysteresis using the gauge/gravity duality. We first propose a novel and general formula to compute the magnetization in a large class of holographic models. By using this formula, we compute the spontaneous magnetization in a model like a holographic superconductor. Furthermore, we turn on the external magnetic field and build the hysteresis curve of magnetization and charge density. To our knowledge, this is the first holographic model realizing the hysteresis accompanied with spontaneous symmetry breaking. By considering the Landau-Ginzburg type effective potential in the symmetry broken phase, we obtain the mass of the magnon from the bulk geometry data.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.