Do you want to publish a course? Click here

Pressure effects on the electronic properties of the undoped superconductor ThFeAsN

136   0   0.0 ( 0 )
 Added by Toni Shiroka
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently synthesized ThFeAsN iron-pnictide superconductor exhibits a $T_c$ of 30 K, the highest of the 1111-type series in absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic investigations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the ${}^{75}$As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggest a multi-band $s^{pm}$-wave gap symmetry in the dirty limit, while the gap-to-$T_c$ ratio $Delta/k_mathrm{B}T_c$ hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing $T_c$, as well as $T_m$, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K/GPa. This decrease of $T_c$ with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe 3$d_{z^2}$ orbitals.



rate research

Read More

We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the Lowdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmetry lines. Such release of the band degeneracy naturally determines a reconstruction of the Fermi surface, including the possibility of changing the number of pockets.
67 - T. Shiroka , T. Shang , C. Wang 2017
Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation ($mu$SR) and nuclear magnetic resonance (NMR) techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below 35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the $s$-wave superconducting gap in this compound from the standard $s^{pm}$ scenario.
A polycrystalline sample of FeSe, which adopts the tetragonal PbO-type structure (P4/nmm) at room temperature, has been prepared using solid state reaction. We have investigated pressure-induced structural changes in tetragonal FeSe at varying hydrostatic pressures up to 0.6 GPa in the orthorhombic (T = 50 K) and tetragonal (T = 190 K) phases using high resolution neutron powder diffraction. We report that the structure is quite compressible with a Bulk modulus around 31 GPa to 33 GPa and that the pressure response is anisotropic with a larger compressibility along the c-axis. Key bond angles of the SeFe4 pyramids and FeSe4 tetrahedra are also determined as a function of pressure.
Pressure effects on a recently discovered BiS2-based superconductor Bi2(O,F)S2 (Tc = 5.1 K) were examined via two different methods; high pressure resistivity measurement and high pressure annealing. The effects of these two methods on the superconducting properties of Bi2(O,F)S2 were significantly different although in both methods hydrostatic pressure is applied to the sample by the cubic-anvil-type apparatus. In high pressure resistivity measurement, Tc linearly decreased at the rate of -1.2 K GPa-1. In contrast, the Tc of 5.1 K is maintained after high pressure annealing under 2 GPa and 470{deg}C of optimally doped sample despite significant change of lattice parameters. In addition, superconductivity was observed in fluorine-free Bi2OS2 after high pressure annealing. These results suggest that high pressure annealing would cause a unique effect on physical properties of layered compounds.
We report the first nitrogen-containing iron-pnictide superconductor ThFeAsN, which is synthesized by a solid-state reaction in an evacuated container. The compound crystallizes in a ZrCuSiAs-type structure with the space group P4/nmm and lattice parameters a=4.0367(1) {AA} and c=8.5262(2) {AA} at 300 K. The electrical resistivity and dc magnetic susceptibility measurements indicate superconductivity at 30 K for the nominally undoped ThFeAsN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا