No Arabic abstract
We report the discovery of a nearby dwarf galaxy in the constellation of Hydrus, between the Large and the Small Magellanic Clouds. Hydrus 1 is a mildy elliptical ultra-faint system with luminosity $M_Vsim$ -4.7 and size $sim$ 50 pc, located 28 kpc from the Sun and 24 kpc from the LMC. From spectroscopy of $sim$ 30 member stars, we measure a velocity dispersion of 2.7 km/s and find tentative evidence for a radial velocity gradient consistent with 3 km/s rotation. Hydrus 1s velocity dispersion indicates that the system is dark matter dominated, but its dynamical mass-to-light ratio M/L $sim$ 66 is significantly smaller than typical for ultra-faint dwarfs at similar luminosity. The kinematics and spatial position of Hydrus~1 make it a very plausible member of the family of satellites brought into the Milky Way by the Magellanic Clouds. While Hydrus 1s proximity and well-measured kinematics make it a promising target for dark matter annihilation searches, we find no evidence for significant gamma-ray emission from Hydrus 1. The new dwarf is a metal-poor galaxy with a mean metallicity [Fe/H]=-2.5 and [Fe/H] spread of 0.4 dex, similar to other systems of similar luminosity. Alpha-abundances of Hyi 1 members indicate that star-formation was extended, lasting between 0.1 and 1 Gyr, with self-enrichment dominated by SN Ia. The dwarf also hosts a highly carbon-enhanced extremely metal-poor star with [Fe/H] $sim$ -3.2 and [C/Fe] $sim$ +3.0.
The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with $10^4$-$10^7$ solar masses and radii of 5-100 parsecs, are the seeds of star formation. Highlighting the molecular gas structure at such small scales in distant galaxies is observationally challenging. Only a handful of molecular clouds were reported in two extreme submillimetre galaxies at high redshift. Here we search for GMCs in a typical Milky Way progenitor at z = 1.036. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we mapped the CO(4-3) emission of this gravitationally lensed galaxy at high resolution, reading down to 30 parsecs, which is comparable to the resolution of CO observations of nearby galaxies. We identify 17 molecular clouds, characterized by masses, surface densities and supersonic turbulence all of which are 10-100 times higher than present-day analogues. These properties question the universality of GMCs and suggest that GMCs inherit their properties from ambient interstellar medium. The measured cloud gas masses are similar to the masses of stellar clumps seen in the galaxy in comparable numbers. This corroborates the formation of molecular clouds by fragmentation of distant turbulent galactic gas disks, which then turn into stellar clumps ubiquitously observed in galaxies at cosmic noon.
The Magellanic System (MS) encompasses the nearest neighbors of the Milky Way, the Large (LMC) and Small (SMC) Magellanic Clouds, and the Magellanic Bridge (MBR). This system contains a diverse sample of star clusters. Their parameters, such as the spatial distribution, chemical composition and age distribution yield important information about the formation scenario of the whole Magellanic System. Using deep photometric maps compiled in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) we present the most complete catalog of star clusters in the Magellanic System ever constructed from homogeneous, long time-scale photometric data. In this second paper of the series, we show the collection of star clusters found in the area of about 360 square degrees in the MBR and in the outer regions of the SMC. Our sample contains 198 visually identified star cluster candidates, 75 of which were not listed in any of the previously published catalogs. The new discoveries are mainly young small open clusters or clusters similar to associations.
In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more representative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.
We analyse a sample of twelve galaxy clusters, from the Kapteyn IAC WEAVE INT Cluster Survey (KIWICS) looking for dwarf galaxy candidates. By using photometric data in the $r$ and $g$ bands from the Wide Field Camera (WFC) at the 2.5-m Isaac Newton telescope (INT), we select a sample of bright dwarf galaxies (M$_r$ $leq$ -15.5 mag) in each cluster and analyse their spatial distribution, stellar colour, and as well as their Sersic index and effective radius. We quantify the dwarf fraction inside the $R_{200}$ radius of each cluster, which ranges from $sim$ 0.7 to $sim$ 0.9. Additionally, when comparing the fraction in the inner region with the outermost region of the clusters, we find that the fraction of dwarfs tends to increase going to the outer regions. We also study the clustercentric distance distribution of dwarf and giant galaxies (M$_r$ $<$ -19.0 mag), and in half of the clusters of our sample, the dwarfs are distributed in a statistically different way as the giants, with the giant galaxies being closer to the cluster centre. We analyse the stellar colour of the dwarf candidates and quantify the fraction of blue dwarfs inside the $R_{200}$ radius, which is found to be less than $sim$ 0.4, but increases with distance from the cluster centre. Regarding the structural parameters, the Sersic index for the dwarfs we visually classify as early type dwarfs tends to be higher in the inner region of the cluster. These results indicate the role that the cluster environment plays in shaping the observational properties of low-mass halos.
We present the first detailed kinematic analysis of the proper motions (PMs) of stars in the Magellanic Bridge, from both the textit{Gaia} Data Release 2 catalog and from textit{Hubble Space Telescope} Advanced Camera for Surveys data. For the textit{Gaia} data, we identify and select two populations of stars in the Bridge region, young main sequence (MS) and red giant stars. The spatial locations of the stars are compared against the known H {small I} gas structure, finding a correlation between the MS stars and the H {small I} gas. In the textit{Hubble Space Telescope} fields our signal comes mainly from an older MS and turn-off population, and the proper motion baselines range between $sim 4$ and 13 years. The PMs of these different populations are found to be consistent with each other, as well as across the two telescopes. When the absolute motion of the Small Magellanic Cloud is subtracted out, the residual Bridge motions display a general pattern of pointing away from the Small Magellanic Cloud towards the Large Magellanic Cloud. We compare in detail the kinematics of the stellar samples against numerical simulations of the interactions between the Small and Large Magellanic Clouds, and find general agreement between the kinematics of the observed populations and a simulation in which the Clouds have undergone a recent direct collision.