Do you want to publish a course? Click here

A liouville property with application to asymptotic stability for the camassa-holm equation

130   0   0.0 ( 0 )
 Added by Luc Molinet
 Publication date 2018
  fields
and research's language is English
 Authors Luc Molinet




Ask ChatGPT about the research

We prove a Liouville property for uniformly almost localized (up to translations) H 1-global solutions of the Camassa-Holm equation with a momentum density that is a non negative finite measure. More precisely, we show that such solution has to be a peakon. As a consequence, we prove that peakons are asymptotically stable in the class of H 1-functions with a momentum density that belongs to M + (R). Finally, we also get an asymptotic stability result for train of peakons.



rate research

Read More

108 - Luc Molinet 2018
We continue our investigation on the asymptotic stability of the peakon. In a first step we extend our asymptotic stability result [29] in the class of functions whose negative part of the momentum density is supported in ] -- $infty$, x 0 ] and the positive part in [x 0 , +$infty$[ for some x 0 $in$ R. In a second step this enables us to prove the asymptotic stability of well-ordered train of antipeakons-peakons and, in particular, of the antipeakon-peakon profile. Finally, in the appendix we prove that in the case of a non negative momentum density the energy at the left of any given point decays to zero as time goes to +$infty$,. This leads to an improvement of the asymptotic stability result stated in [29].
In this paper, we study orbital stability of peakons for the generalized modified Camassa-Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa-Holm (mCH) equation, and admits Hamiltonian form and single peakons. We first show that the single peakon is the usual weak solution of the PDEs. Some sign invariant properties and conserved densities are presented. Next, by constructing the corresponding auxiliary function $h(t,,x)$ and establishing a delicate polynomial inequality relating to the two conserved densities with the maximal value of approximate solutions, the orbital stability of single peakon of the gmCH equation is verified. We introduce a new approach to prove the key inequality, which is different from that used for the mCH equation. This extends the result on the stability of peakons for the mCH equation (Comm. Math. Phys., 322:967-997, 2013) successfully to the higher-order case, and is helpful to understand how higher-order nonlinearities affect the dispersion dynamics.
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general $H^1$ initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in $H^1$ towards a dissipative weak solution of Camassa-Holm equation.
65 - Luc Molinet 2018
We prove that the peakons are asymptotically H 1-stable, under the flow of the Degasperis-Procesi equation, in the class of functions with a momentum density that belongs to M + (R). The key argument is a rigidity result for uniformly in time exponentially decaying global solutions that is shared by the Holm-Staley b-family of equations for b $ge$ 1. This extends previous results obtained for the Camassa-Holm equation (b = 2).
It is well-known that by requiring solutions of the Camassa-Holm equation to satisfy a particular local conservation law for the energy in the weak sense, one obtains what is known as conservative solutions. As conservative solutions preserve energy, one might be inclined to think that any solitary traveling wave is conservative. However, in this paper we prove that the traveling waves known as stumpons are not conservative. We illustrate this result by comparing the stumpon to simulations produced by a numerical scheme for conservative solutions, which has been recently developed by Galtung and Raynaud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا