No Arabic abstract
We consider the spatially homogeneous Boltzmann equation for ballistic annihilation in dimension d 2. Such model describes a system of ballistic hard spheres that, at the moment of interaction, either annihilate with probability $alpha$ $in$ (0, 1) or collide elastically with probability 1 -- $alpha$. Such equation is highly dissipative in the sense that all observables, hence solutions, vanish as time progresses. Following a contribution , by two of the authors, considering well posedness of the steady self-similar profile in the regime of small annihilation rate $alpha$ $ll$ 1, we prove here that such self-similar profile is the intermediate asymptotic attractor to the annihilation dynamics with explicit universal algebraic rate. This settles the issue about universality of the annihilation rate for this model brought in the applied literature.
We show that solutions to Smoluchowskis equation with a constant coagulation kernel and an initial datum with some regularity and exponentially decaying tail converge exponentially fast to a self-similar profile. This convergence holds in a weighted Sobolev norm which implies the L^2 convergence of derivatives up to a certain order k depending on the regularity of the initial condition. We prove these results through the study of the linearized coagulation equation in self-similar variables, for which we show a spectral gap in a scale of weighted Sobolev spaces. We also take advantage of the fact that the Laplace or Fourier transforms of this equation can be explicitly solved in this case.
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
We prove the propagation of regularity, uniformly in time, for the scaled solutions of one-dimensional dissipative Maxwell models. This result together with the weak convergence towards the stationary state proven by Pareschi and Toscani in 2006 implies the strong convergence in Sobolev norms and in the L^1 norm towards it depending on the regularity of the initial data. In the case of the one-dimensional inelastic Boltzmann equation, the result does not depend of the degree of inelasticity. This generalizes a recent result of Carlen, Carrillo and Carvalho (arXiv:0805.1051v1), in which, for weak inelasticity, propagation of regularity for the scaled inelastic Boltzmann equation was found by means of a precise control of the growth of the Fisher information.
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be described using a finite number of auxiliary processes), we pass to the mean field limit to obtain the corresponding McKean-Vlasov equation in an extended phase space. We obtain the fundamental solution (Greens function) for this equation, for the case of a quadratic confining potential and a quadratic (Curie-Weiss) interaction. Furthermore, for nonconvex confining potentials we characterize the stationary state(s) of the McKean-Vlasov equation, and we show that the bifurcation diagram of the stationary problem is independent of the memory in the system. In addition, we show that the McKean-Vlasov equation for the non-Markovian dynamics can be written in the GENERIC formalism and we study convergence to equilibrium and the Markovian asymptotic limit.
We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application we consider the critical wave equation and prove the asymptotic stability of the ODE blowup profile in the energy space.