Do you want to publish a course? Click here

CytonRL: an Efficient Reinforcement Learning Open-source Toolkit Implemented in C++

166   0   0.0 ( 0 )
 Added by Xiaolin Wang
 Publication date 2018
and research's language is English
 Authors Xiaolin Wang




Ask ChatGPT about the research

This paper presents an open-source enforcement learning toolkit named CytonRL (https://github.com/arthurxlw/cytonRL). The toolkit implements four recent advanced deep Q-learning algorithms from scratch using C++ and NVIDIAs GPU-accelerated libraries. The code is simple and elegant, owing to an open-source general-purpose neural network library named CytonLib. Benchmark shows that the toolkit achieves competitive performances on the popular Atari game of Breakout.



rate research

Read More

This paper presents an open-source neural machine translation toolkit named CytonMT (https://github.com/arthurxlw/cytonMt). The toolkit is built from scratch only using C++ and NVIDIAs GPU-accelerated libraries. The toolkit features training efficiency, code simplicity and translation quality. Benchmarks show that CytonMT accelerates the training speed by 64.5% to 110.8% on neural networks of various sizes, and achieves competitive translation quality.
Model-Based Reinforcement Learning (MBRL) is one category of Reinforcement Learning (RL) algorithms which can improve sampling efficiency by modeling and approximating system dynamics. It has been widely adopted in the research of robotics, autonomous driving, etc. Despite its popularity, there still lacks some sophisticated and reusable open-source frameworks to facilitate MBRL research and experiments. To fill this gap, we develop a flexible and modularized framework, Baconian, which allows researchers to easily implement a MBRL testbed by customizing or building upon our provided modules and algorithms. Our framework can free users from re-implementing popular MBRL algorithms from scratch thus greatly save users efforts on MBRL experiments.
Textual adversarial attacking has received wide and increasing attention in recent years. Various attack models have been proposed, which are enormously distinct and implemented with different programming frameworks and settings. These facts hinder quick utilization and apt comparison of attack models. In this paper, we present an open-source textual adversarial attack toolkit named OpenAttack. It currently builds in 12 typical attack models that cover all the attack types. Its highly inclusive modular design not only supports quick utilization of existing attack models, but also enables great flexibility and extensibility. OpenAttack has broad uses including comparing and evaluating attack models, measuring robustness of a victim model, assisting in developing new attack models, and adversarial training. Source code, built-in models and documentation can be obtained at https://github.com/thunlp/OpenAttack.
Graph neural networks (GNNs) constitute a class of deep learning methods for graph data. They have wide applications in chemistry and biology, such as molecular property prediction, reaction prediction and drug-target interaction prediction. Despite the interest, GNN-based modeling is challenging as it requires graph data pre-processing and modeling in addition to programming and deep learning. Here we present DGL-LifeSci, an open-source package for deep learning on graphs in life science. DGL-LifeSci is a python toolkit based on RDKit, PyTorch and Deep Graph Library (DGL). DGL-LifeSci allows GNN-based modeling on custom datasets for molecular property prediction, reaction prediction and molecule generation. With its command-line interfaces, users can perform modeling without any background in programming and deep learning. We test the command-line interfaces using standard benchmarks MoleculeNet, USPTO, and ZINC. Compared with previous implementations, DGL-LifeSci achieves a speed up by up to 6x. For modeling flexibility, DGL-LifeSci provides well-optimized modules for various stages of the modeling pipeline. In addition, DGL-LifeSci provides pre-trained models for reproducing the test experiment results and applying models without training. The code is distributed under an Apache-2.0 License and is freely accessible at https://github.com/awslabs/dgl-lifesci.
Learning good representations is a long standing problem in reinforcement learning (RL). One of the conventional ways to achieve this goal in the supervised setting is through regularization of the parameters. Extending some of these ideas to the RL setting has not yielded similar improvements in learning. In this paper, we develop an online regularization framework for decorrelating features in RL and demonstrate its utility in several test environments. We prove that the proposed algorithm converges in the linear function approximation setting and does not change the main objective of maximizing cumulative reward. We demonstrate how to scale the approach to deep RL using the Gramian of the features achieving linear computational complexity in the number of features and squared complexity in size of the batch. We conduct an extensive empirical study of the new approach on Atari 2600 games and show a significant improvement in sample efficiency in 40 out of 49 games.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا