Locality of Edge States and Entanglement Spectrum from Strong Subadditivity


Abstract in English

We consider two-dimensional states of matter satisfying an uniform area law for entanglement. We show that the topological entanglement entropy is equal to the minimum relative entropy distance from the reduced state to the set of thermal states of local models. The argument is based on strong subadditivity of quantum entropy. For states with zero topological entanglement entropy, in particular, the formula gives locality of the states at the boundary of a region as thermal states of local Hamiltonians. It also implies that the entanglement spectrum of a two-dimensional region is equal to the spectrum of a one-dimensional local thermal state on the boundary of the region.

Download