Do you want to publish a course? Click here

Nanowire-Intensified MEF in Hybrid Polymer-Plasmonic Electrospun Filaments

70   0   0.0 ( 0 )
 Added by Dario Pisignano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here we report on the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also evidenced, with MEF significantly increasing upon reducing the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, as well as the general Nanowire-Intensified MEF effect associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and inter-coupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.



rate research

Read More

109 - Lech Sznitko 2018
We present stacked organic lasing heterostructures made by different species of light-emitting electrospun fibers, each able to provide optical gain in a specific spectral region. A hierarchical architecture is obtained by conformable layers of fibers with disordered two-dimensional organization and three-dimensional compositional heterogeneity. Lasing polymer fibers are superimposed in layers, showing asymmetric optical behavior from the two sides of the organic heterostructure, and tailored and bichromatic stimulated emission depending on the excitation direction. A marginal role of energy acceptor molecules in determining quenching of high-energy donor species is evidenced by luminescence decay time measurements. These findings show that non-woven stacks of light-emitting electrospun fibers doped with different dyes exhibit critically-suppressed Forster resonance energy transfer, limited at joints between different fiber species. This leads to obtain hybrid materials with mostly physically-separated acceptors and donors, thus largely preventing donor quenching and making much easier to achieve simultaneous lasing from multiple spectral bands. Coherent backscattering experiments are also performed on the system, suggesting the onset of random lasing features. These new organic lasing systems might find application in microfluidic devices where flexible and bidirectional excitation sources are needed, optical sensors, and nanophotonics.
77 - S. Varagnolo 2017
We report on a comprehensive study of the unique adhesive properties of mats of polymethylmethacrylate (PMMA) nanofibers produced by electrospinning. Fibers are deposited on glass, varying the diameter and the relative orientation of the polymer filaments (random vs aligned configuration). While no significant variation is observed in the static contact angle (about 130{deg}) of deposited water drops upon changing the average fiber diameter up to the micrometer scale, fibers are found to exhibit unequalled water adhesion. Placed vertically, they can hold up water drops as large as 60 microL, more than twice the values typically obtained with hairy surfaces prepared by different methods. For aligned fibers with anisotropic wetting behavior, the maximum volume measured in the direction perpendicular to the fibers goes up to 90 {mu}L. This work suggests new routes to tailor the wetting behavior on extended areas by nanofiber coatings, with possible applications in adsorbing and catalytic surfaces, microfluidic devices, and filtration technologies.
Manipulation of light-beams with subwavelenth metallic devices has motivated intensive studies, following the discovery of extraordinary transmission of electromagnetic waves through sub-wavelength apertures in thin noble-metal films. The propagation of light in these holes can be investigated at greately improved spatial resolution by means of focused electron-beams. Here we demonstrate direct e-beam excitation of radiative cavity modes well below the surface plasmon (SP) frequency, of isolated rectangular holes in gold films, illuminating the hotly debated phenomenon of the extraordinary optical transmission through subwavelength holes. The exceptionally long range e-beam interaction with the metal through the vacuum, involving electromagnetic excitations within the light cone, is allowed by momentum conservation breakdown along the e-beam axis. Two types of lowlying excited modes are revealed: radiative cavity modes which are nearly unaffected by SPs, and SP polariton modes with waveguide character in the near field region of the slit walls, which in spite of the strong hybridization preserve the waveguide cutoff frequencies and symmetry characteristics.
Frenkel excitons are the primary photoexcitations in organic semiconductors and are ultimately responsible for the optical properties of such materials. They are also predicted to form emph{bound} exciton pairs, termed biexcitons, which are consequential intermediates in a wide range of photophysical processes. Generally, we think of bound states as arising from an attractive interaction. However, here we report on our recent theoretical analysis predicting the formation of stable biexciton states in a conjugated polymer material arising from both attractive and repulsive interactions. We show that in J-aggregate systems, JJ-biexcitons can arise from repulsive dipolar interactions with energies $E_{JJ}> 2E_J$ while in H-aggregates, HH-biexciton states $E_{HH} < 2E_H$ corresponding to attractive dipole exciton/exciton interactions. These predictions are corroborated by using ultrafast double-quantum coherence spectroscopy on a PBTTT material that exhibits both J- and H-like excitonic behavior.
Molybdenum disulfide (MoS2) has been attracting extraordinary attention for its intriguing optical, electronic and mechanical properties. Here we demonstrate hybrid, organic-inorganic light-emitting nanofibers based on MoS2 nanoparticle dopants obtained through a simple and inexpensive sonication process in N-methyl-2-pyrrolidone and successfully encapsulated in polymer filaments. Defectiveness is found to be kept low, and stoichiometry preserved, by the implemented, gentle exfoliation method that allows the MoS2 nanoparticles to be produced. So-achieved hybrid fibers are smooth, uniform, flawless, and exhibit bright and continuous light emission. Moreover, they show significant capability of waveguiding self-emitted light along their longitudinal axis. These findings suggest the use of emissive MoS2 fibers enabled by gentle exfoliation methods as novel and highly promising optical material for building sensing surfaces and as components of photonic circuits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا