Do you want to publish a course? Click here

Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments

92   0   0.0 ( 0 )
 Added by Luca Marmugi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a single-channel rubidium radio-frequency atomic magnetometer operating in un-shielded environments and near room temperature with a measured sensitivity of 130 fT/sqrt{Hz}. We demonstrate consistent, narrow-bandwidth operation across the kHz - MHz band, corresponding to three orders of magnitude of magnetic field amplitude. A compensation coil system controlled by a feedback loop actively and automatically stabilizes the magnetic field around the sensor. We measure a reduction of the 50 Hz noise contribution by an order of magnitude. The small effective sensor volume, 57 mm^3, increases the spatial resolution of the measurements. Low temperature operation, without any magnetic shielding, coupled with the broad tunability, and low beam power, dramatically extends the range of potential field applications for our device.



rate research

Read More

We present first, encouraging results obtained with an experimental apparatus based on Coherent Population Trapping and aimed at detecting biological (cardiac) magnetic field in magnetically compensated, but unshielded volume. The work includes magnetic-field and magnetic-field-gradient compensation and uses differential detection for cancellation of (common mode) magnetic noise. Synchronous data acquisition with a reference (electro-cardiographic or pulse-oximetric) signal allows for improving the S/N in an off-line averaging. The set-up has the relevant advantages of working at room temperature with a small-size head, and of allowing for fast adjustments of the dc bias magnetic field, which results in making the sensor suitable for detecting the bio-magnetic signal at any orientation with respect to the heart axis and in any position around the patient chest, which is not the case with other kinds of magnetometers.
We report an all-optical atomic vector magnetometer using dual Bell-Bloom optical pumping beams in a Rb vapor cell. This vector magnetometer consists of two orthogonal optical pumping beams, with amplitude modulations at $^{85}$Rb and $^{87}$Rb Larmor frequencies respectively. We simultaneously detect atomic signals excited by these two pumping beams using a single probe beam in the third direction, and extract the field orientation information using the phase delays between the modulated atomic signals and the driving beams. By adding a Herriott cavity inside the vapor cell, we improve the magnetometer sensitivity. We study the performance of this vector magnetometer in a magnetic field ranging from 100~mG to 500~mG, and demonstrate a field angle sensitivity better than 10~${mu}$rad/Hz$^{1/2}$ above 10~Hz.
98 - R. Santagata 2019
There is an increasing demand for precise molecular spectroscopy, in particular in the mid-infrared fingerprint window that hosts a considerable number of vibrational signatures, whether it be for modeling our atmosphere, interpreting astrophysical spectra or testing fundamental physics. We present a high-resolution mid-infrared spectrometer traceable to primary frequency standards. It combines a widely tunable ultra-narrow Quantum Cascade Laser (QCL), an optical frequency comb and a compact multipass cell. The QCL frequency is stabilized onto a comb controlled with a remote near-infrared ultra-stable laser, transferred through a fiber link. The resulting QCL frequency stability is below 10-15 from 0.1 to 10s and its frequency uncertainty of 4x10-14 is given by the remote frequency standards. Continuous tuning over ~400 MHz is reported. We use the apparatus to perform saturated absorption spectroscopy of methanol in the low-pressure multipass cell and demonstrate a statistical uncertainty at the kHz level on transition center frequencies, confirming its potential for driving the next generation technology required for precise spectroscopic measurements.
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.
We demonstrate a portable all-optical intrinsic scalar magnetic gradiometer composed of miniaturized cesium vapor cells and vertical-cavity surface-emitting lasers (VCSELs). Two cells, with an inner dimension of 5 mm x 5 mm x 5 mm and separated by a baseline of 5 cm, are driven by one VCSEL and the resulting Larmor precessions are probed by a second VCSEL through optical rotation. The off-resonant linearly polarized probe light interrogates two cells at the same time and the output of the intrinsic gradiometer is proportional to the magnetic field gradient measured over the given baseline. This intrinsic gradiometer scheme has the advantage of avoiding added noise from combining two scalar magnetometers. We achieve better than 18 fT/cm/rt-Hz sensitivity in the gradient measurement. Ultra-sensitive short-baseline magnetic gradiometers can potentially play an important role in many practical applications, such as nondestructive evaluation and unexploded ordnance (UXO) detection. Another application of the gradiometer is for magnetocardiography (MCG) in an unshielded environment. Real-time MCG signals can be extracted from the raw gradiometer readings. The demonstrated gradiometer greatly simplifies the MCG setup and may lead to ubiquitous MCG measurement in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا