No Arabic abstract
Highly volcanic exoplanets, which can be variously characterized as lava worlds, magma ocean worlds, or super-Ios are high priority targets for investigation. The term lava world may refer to any planet with extensive surface lava lakes, while the term magma ocean world refers to planets with global or hemispherical magma oceans at their surface. Highly volcanic planets, including super-Ios, may simply have large, or large numbers of, active explosive or extrusive volcanoes of any form. They are plausibly highly diverse, with magmatic processes across a wide range of compositions, temperatures, activity rates, volcanic eruption styles, and background gravitational force magnitudes. Worlds in all these classes are likely to be the most characterizable rocky exoplanets in the near future due to observational advantages that stem from their preferential occurrence in short orbital periods and their bright day-side flux in the infrared. Transit techniques should enable a level of characterization of these worlds analogous to hot Jupiters. Understanding processes on highly volcanic worlds is critical to interpret imminent observations. The physical states of these worlds are likely to inform not just geodynamic processes, but also planet formation, and phenomena crucial to habitability. Volcanic and magmatic activity uniquely allows chemical investigation of otherwise spectroscopically inaccessible interior compositions. These worlds will be vital to assess the degree to which planetary interior element abundances compare to their stellar hosts, and may also offer pathways to study both the very young Earth, and the very early form of many silicate planets where magma oceans and surface lava lakes are expected to be more prevalent. We suggest that highly volcanic worlds may become second only to habitable worlds in terms of both scientific and public long-term interest.
Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub-Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of atmosphere-stripped exoplanets may thus constrain magma ocean dynamics.
The magma ocean concept was first conceived to explain the geology of the Moon, but hemispherical or global oceans of silicate melt could be a widespread lava world phase of rocky planet accretion, and could persist on planets on short-period orbits around other stars. The formation and crystallization of magma oceans could be a defining stage in the assembly of a core, origin of a crust, initiation of tectonics, and formation of an atmosphere. The last decade has seen significant advances in our understanding of this phenomenon through analysis of terrestrial and extraterrestrial samples, planetary missions, and astronomical observations of exoplanets. This review describes the energetic basis of magma oceans and lava worlds and the lava lake analogs available for study on Earth and Io. It provides an overview of evidence for magma oceans throughout the Solar System and considers the factors that control the rocks these magma oceans leave behind. It describes research on theoretical and observed exoplanets that could host extant magma oceans and summarizes efforts to detect and characterize them. It reviews modeling of the evolution of magma oceans as a result of crystallization and evaporation, the interaction with the underlying solid mantle, and the effects of planetary rotation. The review also considers theoretical investigations on the formation of an atmosphere in concert with the magma ocean and in response to irradiation from the host star, and possible end-states. Finally, it describes needs and gaps in our knowledge and points to future opportunities with new planetary missions and space telescopes to identify and better characterize lava worlds around nearby stars.
The magma ocean period was a critical phase determining how Earth atmosphere developed into habitability. However there are major uncertainties in the role of key processes such as outgassing from the planetary interior and escape of species to space that play a major role in determining the atmosphere of early Earth. We investigate the influence of outgassing of various species and escape of H$_2$ for different mantle redox states upon the composition and evolution of the atmosphere for the magma ocean period. We include an important new atmosphere-interior coupling mechanism namely the redox evolution of the mantle which strongly affects the outgassing of species. We simulate the volatile outgassing and chemical speciation at the surface for various redox states of the mantle by employing a C-H-O based chemical speciation model combined with an interior outgassing model. We then apply a line-by-line radiative transfer model to study the remote appearance of the planet in terms of the infrared emission and transmission. Finally, we use a parameterized diffusion-limited and XUV energy-driven atmospheric escape model to calculate the loss of H$_2$ to space. We have simulated the thermal emission and transmission spectra for reduced or oxidized atmospheres present during the magma ocean period of Earth. Reduced or thin atmospheres consisting of H$_2$ in abundance emit more radiation to space and have larger effective height as compared to oxidized or thick atmospheres which are abundant in H$_2$O and CO$_2$. We obtain the outgassing rates of H2 from the mantle into the atmosphere to be a factor of ten times larger than the rates of diffusion-limited escape to space. Our work presents useful insight into the development of Earth atmosphere during the magma ocean period as well as input to guide future studies discussing exoplanetary interior compositions.
Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could probe their transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes, and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity on tidally flexed ocean worlds should occur frequently. Their ices fracture more easily than rocks, and dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less thermal noise for a due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars.
The runaway greenhouse represents the ultimate climate catastrophe for rocky, Earth-like worlds: when the incoming stellar flux cannot be balanced by radiation to space, the oceans evaporate and exacerbate heating, turning the planet into a hot wasteland with a steam atmosphere overlying a possibly molten magma surface. The equilibrium state beyond the runaway greenhouse instellation limit depends on the radiative properties of the atmosphere and its temperature structure. Here, we use 1-D radiative-convective models of steam atmospheres to explore the transition from the tropospheric radiation limit to the post-runaway climate state. To facilitate eventual simulations with 3-D global circulation models, a computationally efficient band-grey model is developed, which is capable of reproducing the key features of the more comprehensive calculations. We analyze two factors which determine the equilibrated surface temperature of post-runaway planets. The infrared cooling of the planet is strongly enhanced by the penetration of the dry adiabat into the optically thin upper regions of the atmosphere. In addition, thermal emission of both shortwave and near-IR fluxes from the hot lower atmospheric layers, which can radiate through window regions of the spectrum, is quantified. Astronomical surveys of rocky exoplanets in the runaway greenhouse state may discriminate these features using multi-wavelength observations.