Do you want to publish a course? Click here

Emergent dimerization and localization in disordered quantum chains

116   0   0.0 ( 0 )
 Added by Andre Vieira
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We uncover a novel mechanism for inducing a gapful phase in interacting many-body quantum chains. The mechanism is nonperturbative, being triggered only in the presence of both strong interactions and strong aperiodic (disordered) modulation. In the context of the critical antiferromagnetic spin-1/2 XXZ chain, we identify an emerging dimerization which removes the system from criticality and stabilizes the novel phase. This mechanism is shown to be quite general in strongly interacting quantum chains in the presence of strongly modulated quasiperiodic disorder which is, surprisingly, perturbatively irrelevant. Finally, we also characterize the associated quantum phase transition via the corresponding critical exponents and thermodynamic properties.



rate research

Read More

We investigate real-space localization in the few-particle regime of the XXZ spin-$1/2$ chain with a random magnetic field. Our investigation focuses on the time evolution of the spatial variance of non-equilibrium densities, as resulting for a specific class of initial states, namely, pure product states of densely packed particles. Varying the strength of both particle-particle interactions and disorder, we numerically calculate the long-time evolution of the spatial variance $sigma(t)$. For the two-particle case, the saturation of this variance yields an increased but finite localization length, with a parameter scaling different to known results for bosons. We find that this interaction-induced increase is the stronger the more particles are taken into account in the initial condition. We further find that our non-equilibrium dynamics are clearly inconsistent with normal diffusion and instead point to subdiffusive dynamics with $sigma(t) propto t^{1/4}$.
In conformal field theory, key properties of spin-1/2 chains, such as the ground state energy per site and the excitation gap scale with dimerization delta as delta^alpha with known exponents alpha and logarithmic corrections. The logarithmic corrections vanish in a spin chain with nearest (J=1) and next nearest neighbor interactions (J_2), for J_2c=0.2411. DMRG analysis of a frustrated spin chain with no logarithmic corrections yields the field theoretic values of alpha, and the scaling relation is valid up to the physically realized range, delta ~ 0.1. However, chains with logarithmic corrections (J_2<0.2411 J) are more accurately fit by simple power laws with different exponents for physically realized dimerizations. We show the exponents decreasing from approximately 3/4 to 2/3 for the spin gap and from approximately 3/2 to 4/3 for the energy per site and error bars in the exponent also decrease as J_2 approaches to J_2c.
We introduce a clean cluster spin chain coupled to fully interacting spinless fermions, forming an unconstrained Z2 lattice gauge theory (LGT) which possesses dynamical proximity effect controlled by the entanglement structure of the initial state. We expand the machinery of interaction-driven localization to the realm of LGTs such that for any starting product state, the matter fields exhibits emergent statistical bubble localization, which is driven solely by the cluster interaction, having no topologically trivial non-interacting peer, and thus is of pure dynamical many-body effect. In this vein, our proposed setting provides possibly the minimal model dropping all the conventional assumptions regarding the existence of many-body localization. Through projective measurement of local constituting species, we also identify the coexistence of the disentangled nonergodic matter and thermalized gauge degrees of freedom which stands completely beyond the standard established phenomenology of quantum disentangled liquids. As a by product of self-localization of the proximate fermions, the spin subsystem hosts the long-lived topological edge zero modes, which are dynamically decoupled from the thermalized background Z2 charges of the bulk, and hence remains cold at arbitrary high-energy density. This provides a convenient platform for strong protection of the quantum bits of information which are embedded at the edges of completely ergodic sub-system; the phenomenon that in the absence of such proximity-induced self-localization could, at best, come about with a pre-thermal manner in translational invariant systems. Finally, by breaking local Z2 symmetry of the model, we argue that such admixture of particles no longer remains disentangled and the ergodic gauge degrees of freedom act as a small bath coupled to the localized components.
92 - Tarun Grover , T. Senthil 2007
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
We study spontaneous dimerization transitions in a Heisenberg spin-1 chain with additional next-nearest neighbor (NNN) and 3-site interactions using extensive numerical simulations and a conformal field theory analysis. We show that the transition can be second order in the WZW SU(2)$_2$ or Ising universality class, or first-order. We argue that these features are generic because of a marginal operator in the WZW SU(2)$_2$ model, and because of two topologically distinct non-dimerized phases with or without edge states. We also provide explicit numerical evidence of conformal towers of singlets inside the spin gap at the Ising transition. Implications for other models are briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا