No Arabic abstract
We present empirical evidence, supported by a planet formation model, to show that the curve $R/R_oplus = 1.05,(F/F_oplus)^{0.11}$ approximates the location of the so-called photo-evaporation valley. Planets below that curve are likely to have experienced complete photo-evaporation, and planets just above it appear to have inflated radii; thus we identify a new population of inflated super-Earths and mini-Neptunes. Our N-body simulations are set within an evolving protoplanetary disk and include prescriptions for orbital migration, gas accretion, and atmospheric loss due to giant impacts. Our simulated systems broadly match the sizes and periods of super-Earths in the Kepler catalog. They also reproduce the relative sizes of adjacent planets in the same system, with the exception of planet pairs that straddle the photo-evaporation valley. This latter group is populated by planet pairs with either very large or very small size ratios ($R_{rm out} / R_{rm in} gg 1$ or $R_{rm out} / R_{rm in} ll 1$) and a dearth of size ratios near unity. It appears that this feature could be reproduced if the planet outside the photo-evaporation valley (typically the outer planet, but some times not) has its atmosphere significantly expanded by stellar irradiation. This new population of planets may be ideal targets for future transit spectroscopy observations with the upcoming James Webb Space Telescope.
We explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. We model the failed cores inward orbital migration in the low-mass or type I regime, to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zones outer edge, the ice line, and the transition from accretion to starlight as the disks main heat source. As the disk disperses, the traps move toward final positions near or just outside 1~au. Planets at this location exceeding about 3~M$_oplus$ open a gap, decouple from their host trap, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. We synthesize the population of planets formed in this scenario, finding that some fraction of the observed super-Earths can be failed cores. Most super-Earths formed this way have more than 4~M$_oplus$, so their orbits when the disk disperses are governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M$_oplus$. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
The physical state and properties of silicates at conditions encountered in the cores of gas giants, ice giants and of Earth like exoplanets now discovered with masses up to several times the mass of the Earth remains mostly unknown. Here, we report on theoretical predictions of the properties of silica, SiO$_2$, up to 4 TPa and about 20,000K using first principle molecular dynamics simulations based on density functional theory. For conditions found in the Super-Earths and in ice giants, we show that silica remains a poor electrical conductor up to 10 Mbar due to an increase in the Si-O coordination with pressure. For Jupiter and Saturn cores, we find that MgSiO$_3$ silicate has not only dissociated into MgO and SiO$_2$, as shown in previous studies, but that these two phases have likely differentiated to lead to a core made of liquid SiO$_2$ and solid (Mg,Fe)O.
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized treatments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric and magnetic properties.
We investigate equilibrium chemistry between a metal-core, a silicate-mantle, and a hydrogen-rich atmosphere (reactive core model) using 18 independent reactions among 25 phase components for sub-Neptune-like exoplanets. We find hydrogen and oxygen typically comprise 1-2% and ~10% by weight of the metal-core, respectively, leading to under-dense cores and thereby offering a possible alternative explanation for the densities of the Trappist-1 planets. In addition, hydrogen occurs at about 0.1% by mass in the silicate mantle, setting a maximum limit to the hydrogen-budget for out-gassing by future super-Earths. The total hydrogen-budget of most sub-Neptunes can be, to first order, well estimated from their atmospheres alone, as more than ~93% of all H resides in their atmospheres. However, reactions with the magma ocean produce significant amounts of SiO and H_2O in the atmospheres which increase the mean molecular weight averaged over the whole atmosphere, by about a factor of two, to ~4 amu. We also investigated the case where metal is excluded from the equilibrium chemistry (unreactive core model). In this case, we find most noticeably that, as the hydrogen mass fraction is reduced from 2% to 1%, the atmosphere becomes water dominated and large fractions of H are absorbed by the magma. As water dominated atmospheres appear inconsistent with observations, we conclude that either the unreactive core model does not apply to sub-Neptunes and that their evolution is better described by a reactive core, or that in-gassing of hydrogen into the mantle is much less efficient than permitted by equilibrium chemistry.
Ouyed et al. (1998) proposed Deuterium (DD) fusion at the core-mantle interface of giant planets as a mechanism to explain their observed heat excess. But rather high interior temperatures (~10^5 K) and a stratified D layer are needed, making such a scenario unlikely. In this paper, we re-examine DD fusion, with the addition of screening effects pertinent to a deuterated core containing ice and some heavy elements. This alleviates the extreme temperature constraint and removes the requirement of a stratified D layer. As an application, we propose that, if their core temperatures are a few times 10^4 K and core composition is chemically inhomogeneous, the observed inflated size of some giant exoplanets (hot Jupiters) may be linked to screened DD fusion occurring deep in the interior. Application of an analytic evolution model suggests that the amount of inflation from this effect can be important if there is sufficient rock-ice in the core, making DD fusion an effective extra internal energy source for radius inflation. The mechanism of screened DD fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature $T_{rm eq}$, and also depends on planetary mass. Although we do not consider the effect of incident stellar flux, we expect that a minimum level of irradiation is necessary to trigger core erosion and subsequent DD fusion inside the planet. Since DD fusion is quite sensitive to the screening potential inferred from laboratory experiments, observations of inflated hot Jupiters may help constrain screening effects in the cores of giant planets.