No Arabic abstract
We reconsider the QCD predictions for the radiative decay $Bto gamma ell u_ell$ with an energetic photon in the final state by taking into account the $1/E_gamma, 1/m_b$ power-suppressed hard-collinear and soft corrections from higher-twist $B$-meson light-cone distribution amplitudes (LCDAs). The soft contribution is estimated through a dispersion relation and light-cone QCD sum rules. The analysis of theoretical uncertainties and the dependence of the decay form factors on the leading-twist LCDA $phi_+(omega)$ shows that the latter dominates. The radiative leptonic decay is therefore well suited to constrain the parameters of $phi_+(omega)$, including the first inverse moment, $1/lambda_B$, from the expected high-statistics data of the BELLE II experiment.
Applying the method of light-cone sum rules with photon distribution amplitudes, we compute the subleading-power correction to the radiative leptonic $B to gamma ell u$ decay, at next-to-leading order in QCD for the twist-two contribution and at leading order in $alpha_s$ for the higher-twist contributions, induced by the hadronic component of the collinear photon. The leading-twist hadronic photon effect turns out to preserve the symmetry relation between the two $B to gamma$ form factors due to the helicity conservation, however, the higher-twist hadronic photon corrections can yield symmetry-breaking effect already at tree level in QCD. Using the conformal expansion of photon distribution amplitudes with the non-perturbative parameters estimated from QCD sum rules, the twist-two hadronic photon contribution can give rise to approximately 30% correction to the leading-power direct photon effect computed from the perturbative QCD factorization approach. In contrast, the subleading-power corrections from the higher-twist two-particle and three-particle photon distribution amplitudes are estimated to be of ${cal O} (3 sim 5%)$ with the light-cone sum rule approach. We further predict the partial branching fractions of $B to gamma ell u $ with a photon-energy cut $E_{gamma} geq E_{rm cut}$, which are of interest for determining the inverse moment of the leading-twist $B$-meson distribution amplitude thanks to the forthcoming high-luminosity Belle II experiment at KEK.
The leptonic radiative decay $B to gamma l u$ is of great importance in the determination of $B$ meson wave functions, and evaluating the form factors $ F_{V,A}$ are the essential problem on the study of this channel. We computed next-to-leading power corrections to the form factors within the framework of PQCD approach, including the power suppressed hard kernel, the contribution from a complete set of three-particle $B$ meson wave functions up to twist-4 and two-particle off light-cone wave functions, the $1/m_b$ corrections in heavy quark effective theory, and the contribution from hadronic structure of photon. In spite of large theoretical uncertainties, the overall power suppressed contributions decreases about $50%$ of the leading power result. The $lambda_B$ dependence of the integrated branching ratio is reduced after including the subleading power contributions, thus the power corrections lead to more ambiguity in the determination of $lambda_B$ from $B to gamma l u$ decay.
After improving the knowledge about residua of the semileptonic form factor at its first two poles we show that $f_+^{Dpi}(q^2)$ is not saturated when compared with the experimental data. To fill the difference we approximate the rest of discontinuity by an effective pole and show that the data can be described very well with the position of the effective pole larger than the next excitation in the spectrum of $D^ast$ state. The results of fits with experimental data also suggest the validity of superconvergence which in the pole models translates to a vanishing of the sum of residua of the form factor at all poles. A similar discussion in the case of $Bto pi ell u_ell$ leads to the possibility of extracting $vert V_{ub}vert$, the error of which appears to be dominated by $g_{B^ast Bpi}$, which can be nowadays computed on the lattice. In evaluating the residua of the form factors at their nearest pole we needed the vector meson decay constants $f_{D^ast}$ and $f_{B^ast}$, which we computed by using the numerical simulations of QCD on the lattice with $N_{rm f}=2$ dynamical quarks. We obtain, $f_{D^ast}/f_D=1.208(27)$ and $f_{B^ast}/f_B=1.051(17)$.
We revisit QCD calculations of radiative heavy meson decay form factors by including the subleading power corrections from the twist-two photon distribution amplitude at next-to-leading-order in $alpha_s$ with the method of the light-cone sum rules (LCSR). The desired hard-collinear factorization formula for the vacuum-to-photon correlation function with the interpolating currents for two heavy mesons is constructed with the operator-product-expansion technique in the presence of evanescent operators. Applying the background field approach, the higher twist corrections from both the two-particle and three-particle photon distribution amplitudes are further computed in the LCSR framework at leading-order in QCD, up to the twist-four accuracy. Combining the leading power point-like photon contribution at tree level and the subleading power resolved photon corrections from the newly derived LCSR, we update theory predictions for the nonperturbative couplings describing the electromagnetic decay processes of the heavy mesons $H^{ast , pm} to H^{pm} , gamma$, $H^{ast , 0} to H^{0} , gamma$, $H_s^{ast , pm} to H_s^{pm} , gamma$ (with $H=D, , B$). Furthermore, we perform an exploratory comparisons of our sum rule computations of the heavy-meson magnetic couplings with the previous determinations based upon different QCD approaches and phenomenological models.
The $Bto gamma ell u_ell$ decay at large energies of the photon receives a numerically important soft-overlap contribution which is formally of the next-to-leading order in the expansion in the inverse photon energy. We point out that this contribution can be calculated within the framework of heavy-quark expansion and soft-collinear effective theory, making use of dispersion relations and quark-hadron duality. The soft-overlap contribution is obtained in a full analogy with the similar contribution to the $gamma^* gamma to pi$ transition form factor. This result strengthens the case for using the $Bto gamma ell u_ell$ decay to constrain the $B$-meson distribution amplitude and determine its most important parameter, the inverse moment $lambda_B$.