Do you want to publish a course? Click here

Phase diffusion quantum entropy source on a silicon chip

88   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an accelerated laser phase diffusion quantum entropy source with all non-laser optical and optoelectronic elements implemented in silicon photonics. The device uses efficient and robust single-laser accelerated phase diffusion methods, and implements the whole quantum entropy source scheme including an unbalanced Mach-Zehnder interferometer with optimized splitting ratio, in a 0.5 mmx1 mm footprint. We demonstrate Gbps raw entropy-generation rates in a technology compatible with conventional CMOS fabrication techniques.



rate research

Read More

Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shors factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, non-fault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a Silicon quantum photonic device. The approach is verified to be well suited for pre-threshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
Integrated optical devices may replace bulk crystal or fiber based assemblies with a more compact and controllable photon pair and heralded single photon source and generate quantum light at telecommunications wavelengths. Here, we propose that a periodic waveguide consisting of a sequence of optical resonators may outperform conventional waveguides or single resonators and generate more than 1 Giga-pairs per second from a sub-millimeter-long room-temperature silicon device, pumped with only about 10 milliwatts of optical power. Furthermore, the spectral properties of such devices provide novel opportunities of wavelength-division multiplexed chip-scale quantum light sources.
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
Entanglement is a counterintuitive feature of quantum physics that is at the heart of quantum technology. High-dimensional quantum states offer unique advantages in various quantum information tasks. Integrated photonic chips have recently emerged as a leading platform for the generation, manipulation and detection of entangled photons. Here, we report a silicon photonic chip that uses novel interferometric resonance-enhanced photon-pair sources, spectral demultiplexers and high-dimensional reconfigurable circuitries to generate, manipulate and analyse path-entangled three-dimensional qutrit states. By minimizing on-chip electrical and thermal cross-talk, we obtain high-quality quantum interference with visibilities above 96.5% and a maximumly entangled qutrit state with a fidelity of 95.5%. We further explore the fundamental properties of entangled qutrits to test quantum nonlocality and contextuality, and to implement quantum simulations of graphs and high-precision optical phase measurements. Our work paves the path for the development of multiphoton high-dimensional quantum technologies.
Large-scale integrated quantum photonic technologies will require the on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have already been demonstrated, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device combining two four-wave mixing sources, in an interferometer with a reconfigurable phase shifter. We configure the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate), path-entangled or path-unentangled photon pairs. We observe up to 100.0+/-0.4% visibility quantum interference on-chip, and up to 95+/-4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits, and is a first step towards fully-integrated quantum technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا