Do you want to publish a course? Click here

Multilevel Particle Filters for Levy-driven stochastic differential equations

92   0   0.0 ( 0 )
 Added by Kody Law
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We develop algorithms for computing expectations of the laws of models associated to stochastic differential equations (SDEs) driven by pure Levy processes. We consider filtering such processes and well as pricing of path dependent options. We propose a multilevel particle filter (MLPF) to address the computational issues involved in solving these continuum problems. We show via numerical simulations and theoretical results that under suitable assumptions of the discretization of the underlying driving Levy proccess, our proposed method achieves optimal convergence rates. The cost to obtain MSE $O(epsilon^2)$ scales like $O(epsilon^{-2})$ for our method, as compared with the standard particle filter $O(epsilon^{-3})$.



rate research

Read More

We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.
We develop and analyze a method, density tracking by quadrature (DTQ), to compute the probability density function of the solution of a stochastic differential equation. The derivation of the method begins with the discretization in time of the stochastic differential equation, resulting in a discrete-time Markov chain with continuous state space. At each time step, DTQ applies quadrature to solve the Chapman-Kolmogorov equation for this Markov chain. In this paper, we focus on a particular case of the DTQ method that arises from applying the Euler-Maruyama method in time and the trapezoidal quadrature rule in space. Our main result establishes that the density computed by DTQ converges in $L^1$ to both the exact density of the Markov chain (with exponential convergence rate), and to the exact density of the stochastic differential equation (with first-order convergence rate). We establish a Chernoff bound that implies convergence of a domain-truncated version of DTQ. We carry out numerical tests to show that the empirical performance of DTQ matches theoretical results, and also to demonstrate that DTQ can compute densities several times faster than a Fokker-Planck solver, for the same level of error.
199 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bounded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
133 - Xin Liu , Zhenxin Liu 2020
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-periodic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا