No Arabic abstract
The causal structure of any experiment implies restrictions on the observable correlations between measurement outcomes, which are different for experiments exploiting classical, quantum, or post-quantum resources. In the study of Bell nonlocality, these differences have been explored in great detail for more and more involved causal structures. Here, we go in the opposite direction and identify the simplest causal structure which exhibits a separation between classical, quantum, and post-quantum correlations. It arises in the so-called Instrumental scenario, known from classical causal models. We derive inequalities for this scenario and show that they are closely related to well-known Bell inequalities, such as the Clauser-Horne-Shimony-Holt inequality, which enables us to easily identify their classical, quantum, and post-quantum bounds as well as strategies violating the first two. The relations that we uncover imply that the quantum or post-quantum advantages witnessed by the violation of our Instrumental inequalities are not fundamentally different from those witnessed by the violations of standard inequalities in the usual Bell scenario. However, non-classical tests in the Instrumental scenario require fewer input choices than their Bell scenario counterpart, which may have potential implications for device-independent protocols.
We investigate the nonlocality distributions among multiqubit systems based on the maximal violations of the Clauser-Horne-Shimony-Holt (CHSH) inequality of reduced pairwise qubit systems. We present a trade-off relation satisfied by these maximal violations, which gives rise to restrictions on the distribution of nonlocality among the subqubit systems. For a three-qubit system, it is impossible that all pairs of qubits violate the CHSH inequality, and once a pair of qubits violates the CHSH inequality maximally, the other two pairs of qubits must both obey the CHSH inequality. Detailed examples are given to illustrate the trade-off relations, and the trade-off relations are generalized to arbitrary multiqubit systems.
The connection between coarse-graining of measurement and emergence of classicality has been investigated for some time, if not well understood. Recently in (PRL $textbf{112}$, 010402, (2014)) it was pointed out that coarse-graining measurements can lead to non-violation of Bell-type inequalities by a state which would violate it under sharp measurements. We study here the effects of coarse-grained measurements on bipartite cat states. We show that while it is true that coarse-graining does indeed lead to non-violation of a Bell-type inequality, this is not reflected at the state level. Under such measurements the post-measurement states can be non-classical (in the quantum optical sense) and in certain cases coarse-graning can lead to an increase in this non-classicality with respect to the coarse-graining parameter. While there is no universal way to quantify non-classicality, we do so using well understood notions in quantum optics such as the negativity of the Wigner function and the singular nature of the Gluaber-Sudharshan P distribution.
Recently [Cavalcanti textit{et al.} Nat Commun textbf{6}, 7941 (2015)] proposed a method to certify the presence of entanglement in asymmetric networks, where some users do not have control over the measurements they are performing. Such asymmetry naturally emerges in realistic situtations, such as in cryptographic protocols over quantum networks. Here we implement such semi-device independent techniques to experimentally witness all types of entanglement on a three-qubit photonic W state. Furthermore we analise the amount of genuine randomness that can be certified in this scenario from any bipartition of the three-qubit W state.
We generalize the quantum Fisher information flow proposed by Lu textit{et al}. [Phys. Rev. A textbf{82}, 042103 (2010)] to the multi-parameter scenario from the information geometry perspective. A measure named the textit{intrinsic density flow} (IDF) is defined with the time-variation of the intrinsic density of quantum states (IDQS). IDQS measures the local distinguishability of quantum states in state manifolds. The validity of IDF is clarified with its vanishing under the parameter-independent unitary evolution and outward-flow (negativity) under the completely positive-divisible map. The temporary backflow (positivity) of IDF is thus an essential signature of the non-Markovian dynamics. Specific for the time-local master equation, the IDF decomposes according to the channels, and the positive decay rate indicates the inwards flow of the sub-IDF. As time-dependent scalar fields equipped on the state space, the distribution of IDQS and IDF comprehensively illustrates the distortion of state space induced by its environment. As example, a typical qubit model is given.
In this paper we introduce a simple and natural bipartite Bell scenario, by considering the correlations between two parties defined by general measurements in one party and dichotomic ones in the other. We show that unbounded Bell violations can be obtained in this context. Since such violations cannot occur when both parties use dichotomic measurements, our setting can be considered as the simplest one where this phenomenon can be observed. Our example is essentially optimal in terms of the outputs and the Hilbert space dimension.