No Arabic abstract
In the present paper we aim to validate a methodology designed to extract the Halpha emission line flux from J-PLUS photometric data. J-PLUS is a multi narrow-band filter survey carried out with the 2 deg2 field of view T80Cam camera, mounted on the JAST/T80 telescope in the OAJ, Teruel, Spain. The information of the twelve J-PLUS bands, including the J0660 narrow-band filter located at rest-frame Halpha, is used over 42 deg2 to extract de-reddened and [NII] decontaminated Halpha emission line fluxes of 46 star-forming regions with previous SDSS and/or CALIFA spectroscopic information. The agreement of the inferred J-PLUS photometric Halpha fluxes and those obtained with spectroscopic data is remarkable, with a median comparison ratio R = 1.05 +- 0.25. This demonstrates that it is possible to retrieve reliable Halpha emission line fluxes from J-PLUS photometric data. With an expected area of thousands of square degrees upon completion, the J-PLUS dataset will allow the study of several star formation science cases in the nearby universe, as the spatially resolved star formation rate of nearby galaxies at z < 0.015, and how it is influenced by the environment, morphology or nuclear activity. As an illustrative example, the close pair of interacting galaxies NGC3994 and NGC3995 is analyzed, finding an enhancement of the star formation rate not only in the center, but also in outer parts of the disk of NGC3994.
We present the main steps that will be taken to extract H$alpha$ emission flux from Javalambre Photometric Local Universe Survey (J-PLUS) photometric data. For galaxies with $zlesssim0.015$, the H$alpha$+[NII] emission is covered by the J-PLUS narrow-band filter $F660$. We explore three different methods to extract the H$alpha$ + [NII] flux from J-PLUS photometric data: a combination of a broad-band and a narrow-band filter ($r$ and $F660$), two broad-band and a narrow-band one ($r$, $i$ and $F660$), and a SED-fitting based method using 8 photometric points. To test these methodologies, we simulated J-PLUS data from a sample of 7511 SDSS spectra with measured H$alpha$ flux. Based on the same sample, we derive two empirical relations to correct the derived H$alpha$+[NII] flux from dust extinction and [NII] contamination. We find that the only unbiased method is the SED fitting based one. The combination of two filters underestimates the measurements of the H$alpha$ + [NII] flux by a 28%, while the three filters method by a 9%. We study the error budget of the SED-fitting based method and find that, in addition to the photometric error, our measurements have a systematic uncertainty of a 4.3%. Several sources contribute to this uncertainty: differences between our measurement procedure and the one used to derive the spectroscopic values, the use of simple stellar populations as templates, and the intrinsic errors of the spectra, which were not taken into account. Apart from that, the empirical corrections for dust extinction and [NII] contamination add an extra uncertainty of 14%. Given the J-PLUS photometric system, the best methodology to extract H$alpha$ + [NII] flux is the SED-fitting based one. Using this method, we are able to recover reliable H$alpha$ fluxes for thousands of nearby galaxies in a robust and homogeneous way.
J-PLUS is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre. T80Cam is a 2 sq.deg field-of-view camera mounted on this 83cm-diameter telescope, and is equipped with a unique system of filters spanning the entire optical range. This filter system is a combination of broad, medium and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000AA Balmer break region, H$delta$, Ca H+K, the G-band, the Mgb and Ca triplets) that are key to both characterize stellar types and to deliver a low-resolution photo-spectrum for each pixel of the sky observed. With a typical depth of AB $sim 21.25$ mag per band, this filter set thus allows for an indiscriminate and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photo-spectral information for all resolved galaxies in the local universe, as well as accurate photo-z estimates ($Delta,zsim 0.01-0.03$) for moderately bright (up to $rsim 20$ mag) extragalactic sources. While some narrow band filters are designed for the study of particular emission features ([OII]/$lambda$3727, H$alpha$/$lambda$6563) up to $z < 0.015$, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby universe (Milky Way, 2D IFU-like studies, stellar populations of nearby and moderate redshift galaxies, clusters of galaxies) and at high redshifts (ELGs at $zapprox 0.77, 2.2$ and $4.4$, QSOs, etc). With this paper, we release $sim 36$ sq.deg of J-PLUS data, containing about $1.5times 10^5$ stars and $10^5$ galaxies at $r<21$ mag.
We devise a physical model of formation and distribution of molecular gas clouds in galaxies. We use the model to predict the intensities of rotational transition lines of carbon monoxide (CO) and the molecular hydrogen (H$_{rm 2}$) abundance. Using the outputs of Illustris-TNG cosmological simulations, we populate molecular gas clouds of unresolved sizes in individual simulated galaxies, where the effect of the interstellar radiation field with dust attenuation is also taken into account. We then use the publicly available code DESPOTIC to compute the CO line luminosities and H$_{rm 2}$ densities without assuming the CO-to-H$_{rm 2}$ conversion factor ($alpha_{rm CO}$). Our method allows us to study the spatial and kinematic structures traced by CO(1-0) and higher transition lines. We compare the CO luminosities and H$_{rm 2}$ masses with recent observations of galaxies at low and high redshifts. Our model reproduces well the observed CO-luminosity function and the estimated H$_{rm 2}$ mass in the local Universe. About ten per cent of molecules in the Universe reside in dwarf galaxies with stellar masses lower than $10^9~{rm M_odot}$, but the galaxies are generally `CO-dark and have typically high $alpha_{rm CO}$. Our model predicts generally lower CO line luminosities than observations at redshifts $zgtrsim 1$--$2$. We argue that the difference can be explained by the highly turbulent structure suggested for the high-redshift star-forming galaxies.
Knowledge of the number density of H$alpha$ emitting galaxies is vital for assessing the scientific impact of the Euclid and WFIRST missions. In this work we present predictions from a galaxy formation model, Galacticus, for the cumulative number counts of H$alpha$-emitting galaxies. We couple Galacticus to three different dust attenuation methods and examine the counts using each method. A $chi^2$ minimisation approach is used to compare the model predictions to observed galaxy counts and calibrate the dust parameters. We find that weak dust attenuation is required for the Galacticus counts to be broadly consistent with the observations, though the optimum dust parameters return large values for $chi^2$, suggesting that further calibration of Galacticus is necessary. The model predictions are also consistent with observed estimates for the optical depth and the H$alpha$ luminosity function. Finally we present forecasts for the redshift distributions and number counts for two Euclid-like and one WFIRST-like survey. For a Euclid-like survey with redshift range $0.9leqslant zleqslant 1.8$ and H$alpha+{rm [NII]}$ blended flux limit of $2times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 3900--4800 galaxies per square degree. For a WFIRST-like survey with redshift range $1leqslant zleqslant 2$ and blended flux limit of $1times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 10400--15200 galaxies per square degree.
We present the fourth catalog of serendipitously discovered compact extragalactic emission-line sources -- H$alpha$ Dots. A total of 454 newly discovered objects are included in the current survey list. These objects have been detected in searches of moderately deep narrow-band images acquired for the ALFALFA H$alpha$ project (Van Sistine et al. 2016). The catalog of H-alpha Dots presented in the current paper was derived from searches carried out using ALFALFA H$alpha$ images obtained with the KPNO 2.1 m telescope. This results in a substantially deeper sample of Dots compared to our previous lists, which were all discovered in images taken with the WIYN 0.9 m telescope. The median R-band magnitude of the current catalog is 21.59, more than 1.6 magnitudes fainter than the median for the 0.9~m sample (factor of 4.4x fainter). Likewise, the median emission-line flux of the detected sources is a factor of 4.3x fainter. The line-flux completeness limit of the current sample is approximately 3 x 10$^{-16}$ erg/s/cm$^2$. We present accurate coordinates, apparent magnitudes and narrow-band line fluxes for each object in the sample. Unlike our previous lists of H$alpha$ Dots, the current sample does not include follow-up spectroscopy.