Do you want to publish a course? Click here

An information-theoretic, all-scales approach to comparing networks

64   0   0.0 ( 0 )
 Added by James Bagrow
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

As network research becomes more sophisticated, it is more common than ever for researchers to find themselves not studying a single network but needing to analyze sets of networks. An important task when working with sets of networks is network comparison, developing a similarity or distance measure between networks so that meaningful comparisons can be drawn. The best means to accomplish this task remains an open area of research. Here we introduce a new measure to compare networks, the Network Portrait Divergence, that is mathematically principled, incorporates the topological characteristics of networks at all structural scales, and is general-purpose and applicable to all types of networks. An important feature of our measure that enables many of its useful properties is that it is based on a graph invariant, the network portrait. We test our measure on both synthetic graphs and real world networks taken from protein interaction data, neuroscience, and computational social science applications. The Network Portrait Divergence reveals important characteristics of multilayer and temporal networks extracted from data.



rate research

Read More

Safely deploying machine learning models to the real world is often a challenging process. Models trained with data obtained from a specific geographic location tend to fail when queried with data obtained elsewhere, agents trained in a simulation can struggle to adapt when deployed in the real world or novel environments, and neural networks that are fit to a subset of the population might carry some selection bias into their decision process. In this work, we describe the problem of data shift from a novel information-theoretic perspective by (i) identifying and describing the different sources of error, (ii) comparing some of the most promising objectives explored in the recent domain generalization, and fair classification literature. From our theoretical analysis and empirical evaluation, we conclude that the model selection procedure needs to be guided by careful considerations regarding the observed data, the factors used for correction, and the structure of the data-generating process.
It is commonly believed that the hidden layers of deep neural networks (DNNs) attempt to extract informative features for learning tasks. In this paper, we formalize this intuition by showing that the features extracted by DNN coincide with the result of an optimization problem, which we call the `universal feature selection problem, in a local analysis regime. We interpret the weights training in DNN as the projection of feature functions between feature spaces, specified by the network structure. Our formulation has direct operational meaning in terms of the performance for inference tasks, and gives interpretations to the internal computation results of DNNs. Results of numerical experiments are provided to support the analysis.
96 - Etay Ziv 2004
Exploiting recent developments in information theory, we propose, illustrate, and validate a principled information-theoretic algorithm for module discovery and resulting measure of network modularity. This measure is an order parameter (a dimensionless number between 0 and 1). Comparison is made to other approaches to module-discovery and to quantifying network modularity using Monte Carlo generated Erdos-like modular networks. Finally, the Network Information Bottleneck (NIB) algorithm is applied to a number of real world networks, including the social network of coauthors at the APS March Meeting 2004.
We propose a new information theoretic metric for finding periodicities in stellar light curves. Light curves are astronomical time series of brightness over time, and are characterized as being noisy and unevenly sampled. The proposed metric combines correntropy (generalized correlation) with a periodic kernel to measure similarity among samples separated by a given period. The new metric provides a periodogram, called Correntropy Kernelized Periodogram (CKP), whose peaks are associated with the fundamental frequencies present in the data. The CKP does not require any resampling, slotting or folding scheme as it is computed directly from the available samples. CKP is the main part of a fully-automated pipeline for periodic light curve discrimination to be used in astronomical survey databases. We show that the CKP method outperformed the slotted correntropy, and conventional methods used in astronomy for periodicity discrimination and period estimation tasks, using a set of light curves drawn from the MACHO survey. The proposed metric achieved 97.2% of true positives with 0% of false positives at the confidence level of 99% for the periodicity discrimination task; and 88% of hits with 11.6% of multiples and 0.4% of misses in the period estimation task.
In the past three decades, many theoretical measures of complexity have been proposed to help understand complex systems. In this work, for the first time, we place these measures on a level playing field, to explore the qualitative similarities and differences between them, and their shortcomings. Specifically, using the Boltzmann machine architecture (a fully connected recurrent neural network) with uniformly distributed weights as our model of study, we numerically measure how complexity changes as a function of network dynamics and network parameters. We apply an extension of one such information-theoretic measure of complexity to understand incremental Hebbian learning in Hopfield networks, a fully recurrent architecture model of autoassociative memory. In the course of Hebbian learning, the total information flow reflects a natural upward trend in complexity as the network attempts to learn more and more patterns.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا