A Tight Extremal Bound on the Lov{a}sz Cactus Number in Planar Graphs


Abstract in English

A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph $G$ contains a cactus subgraph $C$ where $C$ contains at least a $frac{1}{6}$ fraction of the triangular faces of $G$. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing dense planar structures inside any graph: (i) A $frac{1}{6}$ approximation algorithm for, given any graph $G$, finding a planar subgraph with a maximum number of triangular faces; this improves upon the previous $frac{1}{11}$-approximation; (ii) An alternate (and arguably more illustrative) proof of the $frac{4}{9}$ approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind.

Download