Do you want to publish a course? Click here

Increasing Parallelism in the ROOT I/O Subsystem

50   0   0.0 ( 0 )
 Added by Zhe Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

When processing large amounts of data, the rate at which reading and writing can take place is a critical factor. High energy physics data processing relying on ROOT is no exception. The recent parallelisation of LHC experiments software frameworks and the analysis of the ever increasing amount of collision data collected by experiments further emphasized this issue underlying the need of increasing the implicit parallelism expressed within the ROOT I/O. In this contribution we highlight the improvements of the ROOT I/O subsystem which targeted a satisfactory scaling behaviour in a multithreaded context. The effect of parallelism on the individual steps which are chained by ROOT to read and write data, namely (de)compression, (de)serialisation, access to storage backend, are discussed. Performance measurements are discussed through real life examples coming from CMS production workflows on traditional server platforms and highly parallel architectures such as Intel Xeon Phi.



rate research

Read More

The ROOT TTree data format encodes hundreds of petabytes of High Energy and Nuclear Physics events. Its columnar layout drives rapid analyses, as only those parts (branches) that are really used in a given analysis need to be read from storage. Its unique feature is the seamless C++ integration, which allows users to directly store their event classes without explicitly defining data schemas. In this contribution, we present the status and plans of the future ROOT 7 event I/O. Along with the ROOT 7 interface modernization, we aim for robust, where possible compile-time safe C++ interfaces to read and write event data. On the performance side, we show first benchmarks using ROOTs new experimental I/O subsystem that combines the best of TTrees with recent advances in columnar data formats. A core ingredient is a strong separation of the high-level logical data layout (C++ classes) from the low-level physical data layout (storage backed nested vectors of simple types). We show how the new, optimized physical data layout speeds up serialization and deserialization and facilitates parallel, vectorized and bulk operations. This lets ROOT I/O run optimally on the upcoming ultra-fast NVRAM storage devices, as well as file-less storage systems such as object stores.
82 - Oksana Shadura 2020
We overview recent changes in the ROOT I/O system, increasing performance and enhancing it and improving its interaction with other data analysis ecosystems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly to improve experiments software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically increased during the LHC era. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly: there are significant trade-offs between the increased CPU cost for reading and writing files and the reduce storage space.
Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing.
160 - Zhenkun Cai , Kaihao Ma , Xiao Yan 2020
A good parallelization strategy can significantly improve the efficiency or reduce the cost for the distributed training of deep neural networks (DNNs). Recently, several methods have been proposed to find efficient parallelization strategies but they all optimize a single objective (e.g., execution time, memory consumption) and produce only one strategy. We propose FT, an efficient algorithm that searches for an optimal set of parallelization strategies to allow the trade-off among different objectives. FT can adapt to different scenarios by minimizing the memory consumption when the number of devices is limited and fully utilize additional resources to reduce the execution time. For popular DNN models (e.g., vision, language), an in-depth analysis is conducted to understand the trade-offs among different objectives and their influence on the parallelization strategies. We also develop a user-friendly system, called TensorOpt, which allows users to run their distributed DNN training jobs without caring the details of parallelization strategies. Experimental results show that FT runs efficiently and provides accurate estimation of runtime costs, and TensorOpt is more flexible in adapting to resource availability compared with existing frameworks.
55 - Vassil Vassilev 2020
C++ Modules come in C++20 to fix the long-standing build scalability problems in the language. They provide an io-efficient, on-disk representation capable to reduce build times and peak memory usage. ROOT employs the C++ modules technology further in the ROOT dictionary system to improve its performance and reduce the memory footprint. ROOT with C++ Modules was released as a technology preview in fall 2018, after intensive development during the last few years. The current state is ready for production, however, there is still room for performance optimizations. In this talk, we show the roadmap for making the technology default in ROOT. We demonstrate a global module indexing optimization which allows reducing the memory footprint dramatically for many workflows. We will report user feedback on the migration to ROOT with C++ Modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا