Gromov-Witten Invariants of Local P^2 and Modular Forms


Abstract in English

We construct a sheaf of Fock spaces over the moduli space of elliptic curves E_y with Gamma_1(3)-level structure, arising from geometric quantization of H^1(E_y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P^2 and of the orbifold C^3/mu_3. This proves that the Gromov-Witten potentials of local P^2 are quasi-modular functions for the group Gamma_1(3), as predicted by Aganagic-Bouchard-Klemm, and proves the Crepant Resolution Conjecture for [C^3/mu_3] in all genera.

Download