The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generation of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.
The narrow band beam of ENUBET is the first implementation of the monitored neutrino beam technique proposed in 2015. ENUBET has been designed to monitor lepton production in the decay tunnel of neutrino beams and to provide a 1% measurement of the neutrino flux at source. In particular, the three body semi-leptonic decay of kaons monitored by large angle positron production offers a fully controlled $ u_{e}$ source at the GeV scale for a new generation of short baseline experiments. In this contribution the performances of the positron tagger prototypes tested at CERN beamlines in 2016-2018 are presented.
The challenges of precision neutrino physics require measurements of absolute neutrino cross sections at the GeV scale with exquisite (1%) precision. This precision is presently limited by the uncertainties on neutrino flux at the source; their reduction by one order of magnitude can be achieved monitoring the positron production in the decay tunnel originating from the $K_{e3}$ decays of charged kaons in a sign and momentum selected narrow band beam. This novel technique enables the measurement of the most relevant cross sections for CP violation ($ u_e$ and $overline{ u}_e$) with a precision of 1% and requires a special instrumented beam-line. Such non-conventional beam-line will be developed in the framework of the ENUBET Horizon-2020 Consolidator Grant, recently approved by the European Research Council. The project, the first experimental results on ultra-compact calorimeters that can be embedded in the instrumented decay tunnel and the advances on the simulation of the beamline are presented. We also discuss the detector and accelerator activities that are planned in 2016-2021.
The current generation of short baseline neutrino experiments is approaching intrinsic source limitations in the knowledge of flux, initial neutrino energy and flavor. A dedicated facility based on conventional accelerator techniques and existing infrastructures designed to overcome these impediments would have a remarkable impact on the entire field of neutrino oscillation physics. It would improve by about one order of magnitude the precision on $ u_mu$ and $ u_e$ cross sections, enable the study of electroweak nuclear physics at the GeV scale with unprecedented resolution and advance searches for physics beyond the three-neutrino paradigm. In turn, these results would enhance the physics reach of the next generation long baseline experiments (DUNE and Hyper-Kamiokande) on CP violation and their sensitivity to new physics. In this document, we present the physics case and technology challenge of high precision neutrino beams based on the results achieved by the ENUBET Collaboration in 2016-2018. We also set the R&D milestones to enable the construction and running of this new generation of experiments well before the start of the DUNE and Hyper-Kamiokande data taking. We discuss the implementation of this new facility at three different level of complexity: $ u_mu$ narrow band beams, $ u_e$ monitored beams and tagged neutrino beams. We also consider a site specific implementation based on the CERN-SPS proton driver providing a fully controlled neutrino source to the ProtoDUNE detectors at CERN.
We carry out a state-of-the-art assessment of long baseline neutrino oscillation experiments with wide band beams. We describe the feasibility of an experimental program using existing high energy accelerator facilities, a new intense wide band neutrino beam (0-6 GeV) and a proposed large detector in a deep underground laboratory. We find that a decade-long program with 1 MW operation in the neutrino mode and 2 MW operation in the antineutrino mode, a baseline as long as the distance between Fermilab and the Homestake mine (1300 km) or the Henderson mine (1500 km), and a water Cherenkov detector with fiducial mass of about 300 kT has optimum sensitivity to theta_{13}, the mass hierarchy and to neutrino CP violation at the 3sigma C.L. for sin^22theta_{13}>0.008. This program is capable of breaking the eight-fold degeneracy down to the octant degeneracy without additional external input.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space.