Do you want to publish a course? Click here

Counting Triangles under Updates in Worst-Case Optimal Time

231   0   0.0 ( 0 )
 Added by Ahmet Kara
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider the problem of incrementally maintaining the triangle count query under single-tuple updates to the input relations. We introduce an approach that exhibits a space-time tradeoff such that the space-time product is quadratic in the size of the input database and the update time can be as low as the square root of this size. This lowest update time is worst-case optimal conditioned on the Online Matrix-Vector Multiplication conjecture. The classical and factorized incremental view maintenance approaches are recovered as special cases of our approach within the space-time tradeoff. In particular, they require linear-time update maintenance, which is suboptimal. Our approach also recovers the worst-case optimal time complexity for computing the triangle count in the non-incremental setting.



rate research

Read More

Pipelines combining SQL-style business intelligence (BI) queries and linear algebra (LA) are becoming increasingly common in industry. As a result, there is a growing need to unify these workloads in a single framework. Unfortunately, existing solutions either sacrifice the inherent benefits of exclusively using a relational database (e.g. logical and physical independence) or incur orders of magnitude performance gaps compared to specialized engines (or both). In this work we study applying a new type of query processing architecture to standard BI and LA benchmarks. To do this we present a new in-memory query processing engine called LevelHeaded. LevelHeaded uses worst-case optimal joins as its core execution mechanism for both BI and LA queries. With LevelHeaded, we show how crucial optimizations for BI and LA queries can be captured in a worst-case optimal query architecture. Using these optimizations, LevelHeaded outperforms other relational database engines (LogicBlox, MonetDB, and HyPer) by orders of magnitude on standard LA benchmarks, while performing on average within 31% of the best-of-breed BI (HyPer) and LA (Intel MKL) solutions on their own benchmarks. Our results show that such a single query processing architecture is capable of delivering competitive performance on both BI and LA queries.
We consider the problem of incrementally maintaining the triangle queries with arbitrary free variables under single-tuple updates to the input relations. We introduce an approach called IVM$^epsilon$ that exhibits a trade-off between the update time, the space, and the delay for the enumeration of the query result, such that the update time ranges from the square root to linear in the database size while the delay ranges from constant to linear time. IVM$^epsilon$ achieves Pareto worst-case optimality in the update-delay space conditioned on the Online Matrix-Vector Multiplication conjecture. It is strongly Pareto optimal for the triangle queries with zero or three free variables and weakly Pareto optimal for the triangle queries with one or two free variables.
We consider the task of enumerating and counting answers to $k$-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear$^ast$ delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the querys homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. $^ast)$ By sublinear we mean $O(n^{1-varepsilon})$ for some $varepsilon>0$, where $n$ is the size of the active domain of the current database.
We investigate the query evaluation problem for fixed queries over fully dynamic databases where tuples can be inserted or deleted. The task is to design a dynamic data structure that can immediately report the new result of a fixed query after every database update. We consider unions of conjunctive queries (UCQs) and focus on the query evaluation tasks testing (decide whether an input tuple belongs to the query result), enumeration (enumerate, without repetition, all tuples in the query result), and counting (output the number of tuples in the query result). We identify three increasingly restrictive classes of UCQs which we call t-hierarchical, q-hierarchical, and exhaustively q-hierarchical UCQs. Our main results provide the following dichotomies: If the querys homomorphic core is t-hierarchical (q-hierarchical, exhaustively q-hierarchical), then the testing (enumeration, counting) problem can be solved with constant update time and constant testing time (delay, counting time). Otherwise, it cannot be solved with sublinear update time and sublinear testing time (delay, counting time), unless the OV-conjecture and/or the OMv-conjecture fails. We also study the complexity of query evaluation in the dynamic setting in the presence of integrity constraints, and we obtain according dichotomy results for the special case of small domain constraints (i.e., constraints which state that all values in a particular column of a relation belong to a fixed domain of constant size).
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value for which any set of disks with total area at least $A^*(lambda)$ can cover a rectangle of dimensions $lambdatimes 1$. We show that there is a threshold value $lambda_2 = sqrt{sqrt{7}/2 - 1/4} approx 1.035797ldots$, such that for $lambda<lambda_2$ the critical covering area $A^*(lambda)$ is $A^*(lambda)=3pileft(frac{lambda^2}{16} +frac{5}{32} + frac{9}{256lambda^2}right)$, and for $lambdageq lambda_2$, the critical area is $A^*(lambda)=pi(lambda^2+2)/4$; these values are tight. For the special case $lambda=1$, i.e., for covering a unit square, the critical covering area is $frac{195pi}{256}approx 2.39301ldots$. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا