Do you want to publish a course? Click here

About some exponential inequalities related to the sinc function

54   0   0.0 ( 0 )
 Added by Branko Malesevic
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we prove some exponential inequalities involving the sinc function. We analyze and prove inequalities with constant exponents as well as inequalities with certain polynomial exponents. Also, we establish intervals in which these inequalities hold.



rate research

Read More

130 - Xiaodong Cao 2015
In this paper, we present some new inequalities for the gamma function. The main tools are the multiple-correction method developed in our previous works, and a generalized Morticis lemma.
105 - Shingo Takeuchi 2019
In this paper we will establish some double-angle formulas related to the inverse function of $int_0^x dt/sqrt{1-t^6}$. This function appears in Ramanujans Notebooks and is regarded as a generalized version of the lemniscate function.
In this paper, the formulas of some exponential sums over finite field, related to the Coulters polynomial, are settled based on the Coulters theorems on Weil sums, which may have potential application in the construction of linear codes with few weights.
In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.
We study the two-weighted estimate [ bigg|sum_{k=0}^na_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg|leq c|f|L_{p,u}(0,infty)|,tag{$*$} ] where the functions $a_k(x)$ are not assumed to be positive. It is shown that for $1<pleq qleqinfty$, provided that the weight $u$ satisfies the certain conditions, the estimate $(*)$ holds if and only if the estimate [ sum_{k=0}^nbigg|a_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg| leq c|f|L_{p,u}(0,infty)|.tag{$**$} ] is fulfilled. The necessary and sufficient conditions for $(**)$ to be valid are well-known. The obtained result can be applied to the estimates of differential operators with variable coefficients in some weighted Sobolev spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا