In this paper we present numerical simulations of a macroscopic vision-based model [1] derived from microscopic situation rules described in [2]. This model describes an approach to collision avoidance between pedestrians by taking decisions of turning or slowing down based on basic interaction rules, where the dangerousness level of an interaction with another pedestrian is measured in terms of the derivative of the bearing angle and of the time-to-interaction. A meshfree particle method is used to solve the equations of the model. Several numerical cases are considered to compare this model with models established in the field, for example, social force model coupled to an Eikonal equation [3]. Particular emphasis is put on the comparison of evacuation and computation times. References 1. Degond P., Appert-Rolland C., Pettere J., Theraulaz G., Vision-based macroscopic pedestrian models, Kinetic and Related models, AIMs 6(4), 809-839 (2013) 2. Ondrej J., Pettere J., Olivier A.H., Donikian S., A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29(4), Article 123 (2010) 3. Etikyala R., Gottlich S., Klar A., Tiwari S., Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Mathematical Models and Methods in Applied Sciences, 20(12), 2503-2523 (2014)