Do you want to publish a course? Click here

Symmetry breaking and unconventional charge ordering in single crystal Na$_{2.7}$Ru$_4$O$_9$

73   0   0.0 ( 0 )
 Added by Arvind Yogi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay of charge, spin, and lattice degrees of freedom in matter leads to various forms of ordered states through phase transitions. An important subclass of these phenomena of complex materials is charge ordering (CO), mainly driven by mixed-valence states. We discovered by combining the results of electrical resistivity ($rho$), specific heat, susceptibility $chi$ (textit{T}), and single crystal x-ray diffraction (SC-XRD) that Na$_{2.7}$Ru$_4$O$_9$ with the monoclinic tunnel type lattice (space group $C$2/$m$) exhibits an unconventional CO at room temperature while retaining metallicity. The temperature-dependent SC-XRD results show successive phase transitions with super-lattice reflections at textbf{q}$_1$=(0, $frac{1}{2}$, 0) and textbf{q}$_2$=(0, $frac{1}{3}$, $frac{1}{3}$) below $T_{textrm{C2}}$ (365 K) and only at textbf{q}$_1$=(0, $frac{1}{2}$, 0) between $T_{textrm{C2}}$ and $T_{textrm{C1}}$ (630 K). We interpreted these as an evidence for the formation of an unconventional CO. It reveals a strong first-order phase transition in the electrical resistivity at $T_{textrm{C2}}$ (cooling) = 345 K and $T_{textrm{C2}}$ (heating) = 365 K. We argue that the origin of the phase transition is due to the localized 4$d$ Ru-electrons. The results of our finding reveal an unique example of Ru$^{3+}$/Ru$^{4+}$ mixed valance heavy textit{d}$^4$ ions.



rate research

Read More

360 - L. Yang , M. Jeong , A. Arakcheeva 2016
We report the synthesis of single crystals of a novel layered iridate Ba$_{21}$Ir$_9$O$_{43}$, and present the crystallographic, transport and magnetic properties of this material. The compound has a hexagonal structure with two iridium oxide layers stacked along the $c$ direction. One layer consists of a triangular arrangement of Ir$_2$O$_9$ dimers while the other layer comprises two regular octahedra and one triangular pyramid, forming inter-penetrated triangular lattices. The resistivity as a function of temperature exhibits an insulating behavior, with a peculiar $T^{-3}$ behavior. Magnetic susceptibility shows antiferromagnetic Curie-Weiss behavior with $Theta_mathrm{CW} simeq -$90 K while a magnetic transition occurs at substantially lower temperature of 9 K. We discuss possible valence states and effective magnetic moments on Ir ions in different local environments, and argue that the Ir ions in a unique triangular-pyramidal configuration likely carry unusually large magnetic moments.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order primarily along the a* direction without any spin canting along the c axis, manifested by the magnetic symmetry C2/c. The moments of nearest neighbor Co atoms order ferromagnetically with a small cant away from the next nearest neighbor Co moments along the c axis. In the applied magnetic field H//a, three magnetic domains were aligned with their major magnetic moments perpendicular to the magnetic field with no indication of magnetic phase transitions. The influences of magnetic fields on the magnetic structures associated with the observed magnetoelectric coupling are discussed.
We present the results of measurements of the dc-magnetic susceptibility chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50 and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is found in chi(T). Our data suggest the onset of a dramatic change in the Co 3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our results maybe interpreted as evidence for either a tendency to electron localization or an unconventional charge-density wave phenomenon within the cobalt oxide layer, CoO_2, 3d electron system near room temperature.
80 - K.-W. Lee , J. Kunes , 2004
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x<0.5, where U --> U_eff <= U/sqrt(3) ~ W and correlation effects are substantially reduced.
The low and high-temperature phases of V$_4$O$_7$ have been studied by textit{ab initio} calculations. At high temperature, all V atoms are electronically equivalent and the material is metallic. Charge and orbital ordering, associated with the distortions in the V pseudo-rutile chains, occur below the metal-insulator transition. Orbital ordering in the low-temperature phase, different in V$^{3+}$ and V$^{4+}$ chains, allows to explain the distortion pattern in the insulating phase of V$_4$O$_7$. The in-chain magnetic couplings in the low-temperature phase turn out to be antiferromagnetic, but very different in the various V$^{4+}$ and V$^{3+}$ bonds. The V$^{4+}$ dimers formed below the transition temperature form spin singlets, but V$^{3+}$ ions, despite dimerization, apparently participate in magnetic ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا