Do you want to publish a course? Click here

Chinese-Portuguese Machine Translation: A Study on Building Parallel Corpora from Comparable Texts

137   0   0.0 ( 0 )
 Added by Longyue Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Although there are increasing and significant ties between China and Portuguese-speaking countries, there is not much parallel corpora in the Chinese-Portuguese language pair. Both languages are very populous, with 1.2 billion native Chinese speakers and 279 million native Portuguese speakers, the language pair, however, could be considered as low-resource in terms of available parallel corpora. In this paper, we describe our methods to curate Chinese-Portuguese parallel corpora and evaluate their quality. We extracted bilingual data from Macao government websites and proposed a hierarchical strategy to build a large parallel corpus. Experiments are conducted on existing and our corpora using both Phrased-Based Machine Translation (PBMT) and the state-of-the-art Neural Machine Translation (NMT) models. The results of this work can be used as a benchmark for future Chinese-Portuguese MT systems. The approach we used in this paper also shows a good example on how to boost performance of MT systems for low-resource language pairs.



rate research

Read More

Parallel texts are a relatively rare language resource, however, they constitute a very useful research material with a wide range of applications. This study presents and analyses new methodologies we developed for obtaining such data from previously built comparable corpora. The methodologies are automatic and unsupervised which makes them good for large scale research. The task is highly practical as non-parallel multilingual data occur much more frequently than parallel corpora and accessing them is easy, although parallel sentences are a considerably more useful resource. In this study, we propose a method of automatic web crawling in order to build topic-aligned comparable corpora, e.g. based on the Wikipedia or Euronews.com. We also developed new methods of obtaining parallel sentences from comparable data and proposed methods of filtration of corpora capable of selecting inconsistent or only partially equivalent translations. Our methods are easily scalable to other languages. Evaluation of the quality of the created corpora was performed by analysing the impact of their use on statistical machine translation systems. Experiments were presented on the basis of the Polish-English language pair for texts from different domains, i.e. lectures, phrasebooks, film dialogues, European Parliament proceedings and texts contained medicines leaflets. We also tested a second method of creating parallel corpora based on data from comparable corpora which allows for automatically expanding the existing corpus of sentences about a given domain on the basis of analogies found between them. It does not require, therefore, having past parallel resources in order to train a classifier.
The multilingual nature of the world makes translation a crucial requirement today. Parallel dictionaries constructed by humans are a widely-available resource, but they are limited and do not provide enough coverage for good quality translation purposes, due to out-of-vocabulary words and neologisms. This motivates the use of statistical translation systems, which are unfortunately dependent on the quantity and quality of training data. Such systems have a very limited availability especially for some languages and very narrow text domains. In this research we present our improvements to current comparable corpora mining methodologies by re- implementation of the comparison algorithms (using Needleman-Wunch algorithm), introduction of a tuning script and computation time improvement by GPU acceleration. Experiments are carried out on bilingual data extracted from the Wikipedia, on various domains. For the Wikipedia itself, additional cross-lingual comparison heuristics were introduced. The modifications made a positive impact on the quality and quantity of mined data and on the translation quality.
Neural machine translation (NMT) has achieved notable performance recently. However, this approach has not been widely applied to the translation task between Chinese and Uyghur, partly due to the limited parallel data resource and the large proportion of rare words caused by the agglutinative nature of Uyghur. In this paper, we collect ~200,000 sentence pairs and show that with this middle-scale database, an attention-based NMT can perform very well on Chinese-Uyghur/Uyghur-Chinese translation. To tackle rare words, we propose a novel memory structure to assist the NMT inference. Our experiments demonstrated that the memory-augmented NMT (M-NMT) outperforms both the vanilla NMT and the phrase-based statistical machine translation (SMT). Interestingly, the memory structure provides an elegant way for dealing with words that are out of vocabulary.
Multimodal neural machine translation (NMT) has become an increasingly important area of research over the years because additional modalities, such as image data, can provide more context to textual data. Furthermore, the viability of training multimodal NMT models without a large parallel corpus continues to be investigated due to low availability of parallel sentences with images, particularly for English-Japanese data. However, this void can be filled with comparable sentences that contain bilingual terms and parallel phrases, which are naturally created through media such as social network posts and e-commerce product descriptions. In this paper, we propose a new multimodal English-Japanese corpus with comparable sentences that are compiled from existing image captioning datasets. In addition, we supplement our comparable sentences with a smaller parallel corpus for validation and test purposes. To test the performance of this comparable sentence translation scenario, we train several baseline NMT models with our comparable corpus and evaluate their English-Japanese translation performance. Due to low translation scores in our baseline experiments, we believe that current multimodal NMT models are not designed to effectively utilize comparable sentence data. Despite this, we hope for our corpus to be used to further research into multimodal NMT with comparable sentences.
Recent advances in AI and ML applications have benefited from rapid progress in NLP research. Leaderboards have emerged as a popular mechanism to track and accelerate progress in NLP through competitive model development. While this has increased interest and participation, the over-reliance on single, and accuracy-based metrics have shifted focus from other important metrics that might be equally pertinent to consider in real-world contexts. In this paper, we offer a preliminary discussion of the risks associated with focusing exclusively on accuracy metrics and draw on recent discussions to highlight prescriptive suggestions on how to develop more practical and effective leaderboards that can better reflect the real-world utility of models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا