No Arabic abstract
Motivated by Alladis recent multi-dimensional generalization of Sylvesters classical identity, we provide a simple combinatorial proof of an overpartition analogue, which contains extra parameters tracking the numbers of overlined parts of different colors. This new identity encompasses a handful of classical results as special cases, such as Cauchys identity, and the product expressions of three classical theta functions studied by Gauss, Jacobi and Ramanujan.
The Dixon--Anderson integral is a multi-dimensional integral evaluation fundamental to the theory of the Selberg integral. The $_1psi_1$ summation is a bilateral generalization of the $q$-binomial theorem. It is shown that a $q$-generalization of the Dixon--Anderson integral, due to Evans, and multi-dimensional generalizations of the $_1psi_1$ summation, due to Milne and Gustafson, can be viewed as having a common origin in the theory of $q$-difference equations as expounded by Aomoto. Each is shown to be determined by a $q$-difference equation of rank one, and a certain asymptotic behavior. In calculating the latter, essential use is made of the concepts of truncation, regularization and connection formulae.
Inspired by Andrews 2-colored generalized Frobenius partitions, we consider certain weighted 7-colored partition functions and establish some interesting Ramanujan-type identities and congruences. Moreover, we provide combinatorial interpretations of some congruences modulo 5 and 7. Finally, we study the properties of weighted 7-colored partitions weighted by the parity of certain partition statistics.
We define an excedance number for the multi-colored permutation group, i.e. the wreath product of Z_{r_1} x ... x Z_{r_k} with S_n, and calculate its multi-distribution with some natural parameters. We also compute the multi-distribution of the parameters exc(pi) and fix(pi) over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
A generalized crank ($k$-crank) for $k$-colored partitions is introduced. Following the work of Andrews-Lewis and Ji-Zhao, we derive two results for this newly defined $k$-crank. Namely, we first obtain some inequalities between the $k$-crank counts $M_{k}(r,m,n)$ for $m=2,3$ and $4$, then we prove the positivity of symmetrized even $k$-crank moments weighted by the parity for $k=2$ and $3$. We conclude with several remarks on furthering the study initiated here.
Let $p_{-k}(n)$ enumerate the number of $k$-colored partitions of $n$. In this paper, we establish some infinite families of congruences modulo 25 for $k$-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for $p_{-k}(n)$ with $k=2, 6$, and $7$. For example, for all integers $ngeq0$ and $alphageq1$, we prove that begin{align*} p_{-2}left(5^{2alpha-1}n+dfrac{7times5^{2alpha-1}+1}{12}right) &equiv0pmod{5^{alpha}} end{align*} and begin{align*} p_{-2}left(5^{2alpha}n+dfrac{11times5^{2alpha}+1}{12}right) &equiv0pmod{5^{alpha+1}}. end{align*}