No Arabic abstract
When a compact quantum group $H$ coacts freely on unital $C^*$-algebras $A$ and $B$, the existence of equivariant maps $A to B$ may often be ruled out due to the incompatibility of some invariant. We examine the limitations of using invariants, both concretely and abstractly, to resolve the noncommutative Borsuk-Ulam conjectures of Baum-Dabrowski-Hajac. Among our results, we find that for certain finite-dimensional $H$, there can be no well-behaved invariant which solves the Type 1 conjecture for all free coactions of $H$. This claim is in stark contrast to the case when $H$ is finite-dimensional and abelian. In the same vein, it is possible for all iterated joins of $H$ to be cleft as comodules over the Hopf algebra associated to $H$. Finally, two commonly used invariants, the local-triviality dimension and the spectral count, may both change in a $theta$-deformation procedure.
We introduce and study the notions of boundary actions and of the Furstenberg boundary of a discrete quantum group. As for classical groups, properties of boundary actions turn out to encode significant properties of the operator algebras associated with the discrete quantum group in question; for example we prove that if the action on the Furstenberg boundary is faithful, the quantum group C*-algebra admits at most one KMS-state for the scaling automorphism group. To obtain these results we develop a version of Hamanas theory of injective envelopes for quantum group actions, and establish several facts on relative amenability for quantum subgroups. We then show that the Gromov boundary actions of free orthogonal quantum groups, as studied by Vaes and Vergnioux, are also boundary actions in our sense; we obtain this by proving that these actions admit unique stationary states. Moreover, we prove these actions are faithful, hence conclude a new unique KMS-state property in the general case, and a new proof of unique trace property when restricted to the unimodular case. We prove equivalence of simplicity of the crossed products of all boundary actions of a given discrete quantum group, and use it to obtain a new simplicity result for the crossed product of the Gromov boundary actions of free orthogonal quantum groups.
We prove a conjecture of Rosenberg about the minimal value for energies of untaries in the two-dimensional noncommutative tori and answer a question of his about lower bounds for energies of unital *-endomorphisms of the two-dimensional noncommutative tori.
In [CPR2], we presented a K-theoretic approach to finding invariants of algebras with no non-trivial traces. This paper presents a new example that is more typical of the generic situation. This is the case of an algebra that admits only non-faithful traces, namely SU_q(2), and also KMS states. Our main results are index theorems (which calculate spectral flow), one using ordinary cyclic cohomology and the other using twisted cyclic cohomology, where the twisting comes from the generator of the modular group of the Haar state. In contrast to the Cuntz algebras studied in [CPR2], the computations are considerably more complex and interesting, because there are nontrivial `eta contributions to this index.
We give local upper and lower bounds for the eigenvalues of the modular operator associated to an ergodic action of a compact quantum group on a unital C*-algebra. They involve the modular theory of the quantum group and the growth rate of quantum dimensions of its representations and they become sharp if other integral invariants grow subexponentially. For compact groups, this reduces to the finiteness theorem of Hoegh-Krohn, Landstad and Stormer. Consequently, compact quantum groups of Kac type admitting an ergodic action with a non-tracial invariant state must have representations whose dimensions grow exponentially. In particular, S_{-1}U(d) acts ergodically only on tracial C*-algebras. For quantum groups with non-involutive coinverse, we derive a lower bound for the parameters 0<lambda<1 of factors of type III_lambda that can possibly arise from the GNS representation of the invariant state of an ergodic action with a factorial centralizer.
We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and in noncommutative dynamics. We characterize nc simplices in terms of their geometry and in terms of structural properties of their corresponding operator systems. There is a natural definition of nc Bauer simplex that generalizes the classical definition of a Bauer simplex. We show that a compact nc convex set is an nc Bauer simplex if and only if it is affinely homeomorphic to the nc state space of a unital C*-algebra, generalizing a classical result of Bauer for unital commutative C*-algebras. We obtain several applications to noncommutative dynamics. We show that the set of nc states of a C*-algebra that are invariant with respect to the action of a discrete group is an nc simplex. From this, we obtain a noncommutative ergodic decomposition theorem with uniqueness. Finally, we establish a new characterization of discrete groups with Kazhdans property (T) that extends a result of Glasner and Weiss. Specifically, we show that a discrete group has property (T) if and only if for every action of the group on a unital C*-algebra, the set of invariant states is affinely homeomorphic to the state space of a unital C*-algebra.