The differential cross section for elastic scattering of deuterons on electrons at rest is calculated taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We consider an experimental setup where both final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.
Neutrino oscillation experiments at accelerator energies aim to establish CP violation in the neutrino sector by measuring the energy-dependent rate of $ u_e$ appearance and $ u_mu$ disappearance in a $ u_mu$ beam. Extracting the correct oscillation rate demands control over QED radiative corrections at the percent level. Focusing on the critical charged-current neutrino-nucleon scattering process, we show that the cross section factorizes into two pieces. The first piece depends on hadron structure but is universal for $ u_e$ and $ u_mu$, and hence constrained by high-statistics $ u_mu$ data. The second piece is nonuniversal and suffers large logarithm enhancements, but is computed to high precision using renormalization group improved perturbation theory. Our results provide a missing ingredient for the robust interpretation of current NOvA and T2K experiments, and can be applied to future experiments such as DUNE and HyperK.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.
Radiative corrections are calculated for antineutrino proton quasielastic scattering, neutrino deuteron scattering, and the asymmetry of polarised neutron beta decay from which $G_{A}/G_{V}$ is determined. A particular emphasis is given to the constant parts that are usually absorbed into the coupling constants, and thereby those that appear in the processes that concern us are unambiguously tied among each other.
We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. $^{40}$Ar and $^{28}$Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error budget including uncertainties at nuclear, nucleon, hadronic, and quark levels separately as well as perturbative error. Our calculation starts from the four-fermion effective field theory to explicitly separate heavy-particle mediated corrections (which are absorbed by Wilson coefficients) from light-particle contributions. Electrons and muons running in loops introduce a nontrivial dependence on the momentum transfer due to their relatively light masses. These same loops, and those mediated by tau leptons, break the flavor universality because of mass-dependent electromagnetic radiative corrections. Nuclear physics uncertainties significantly cancel in flavor asymmetries resulting in subpercent relative errors. We find that for low neutrino energies, the cross section can be predicted with a relative precision that is competitive with neutrino-electron scattering. We highlight potentially useful applications of such a precise cross section prediction ranging from precision tests of the Standard Model, to searches for new physics and to the monitoring of nuclear reactors.
We investigate the effect of high order radiative corrections in unpolarized electron proton elastic scattering and compare with the calculations at lowest order, which are usually applied to experimental data. Particular attention is devoted to the $epsilon$ dependence of radiative corrections, which is directly related to the electric proton form factor. We consider in particular the effects of the interference terms for soft and hard photon emission. Both quadratic amplitude describing the collinear emission along the scattered electron as well as the interference with the amplitudes of emission from the initial electron and the emission from protons are important in leading and next to leading approximation and they may compensate in particular kinematical conditions.