Do you want to publish a course? Click here

Sub-exponential convergence to equilibrium for Gaussian driven Stochastic Differential Equations with semi-contractive drift

117   0   0.0 ( 0 )
 Added by Alexandre Richard
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The convergence to the stationary regime is studied for Stochastic Differential Equations driven by an additive Gaussian noise and evolving in a semi-contractive environment, i.e. when the drift is only contractive out of a compact set but does not have repulsive regions. In this setting, we develop a synchronous coupling strategy to obtain sub-exponential bounds on the rate of convergence to equilibrium in Wasserstein distance. Then by a coalescent coupling close to terminal time, we derive a similar bound in total variation distance.



rate research

Read More

This paper investigates a time-dependent multidimensional stochastic differential equation with drift being a distribution in a suitable class of Sobolev spaces with negative derivation order. This is done through a careful analysis of the corresponding Kolmogorov equation whose coefficient is a distribution.
209 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bounded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate of convergence in a suitable $L^1$-norm and we implement the scheme numerically. To the best of our knowledge this is the first paper to study (and implement) numerical solutions of SDEs whose drift lives in a space of distributions. As a byproduct we also obtain an estimate of the convergence rate for a numerical scheme applied to SDEs with drift in $L^p$-spaces with $pin(1,infty)$.
We study a stochastic differential equation driven by a gamma process, for which we give results on the existence of weak solutions under conditions on the volatility function. To that end we provide results on the density process between the laws of solutions with different volatility functions.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا