No Arabic abstract
We present a palette-based framework for color composition for visual applications. Color composition is a critical aspect of visual applications in art, design, and visualization. The color wheel is often used to explain pleasing color combinations in geometric terms, and, in digital design, to provide a user interface to visualize and manipulate colors. We abstract relationships between palette colors as a compact set of axes describing harmonic templates over perceptually uniform color wheels. Our framework provides a basis for a variety of color-aware image operations, such as color harmonization and color transfer, and can be applied to videos. To enable our approach, we introduce an extremely scalable and efficient yet simple palette-based image decomposition algorithm. Our approach is based on the geometry of images in RGBXY-space. This new geometric approach is orders of magnitude more efficient than previous work and requires no numerical optimization. We demonstrate a real-time layer decomposition tool. After preprocessing, our algorithm can decompose 6 MP images into layers in 20 milliseconds. We also conducted three large-scale, wide-ranging perceptual studies on the perception of harmonic colors and harmonization algorithms.
Compositing is one of the most common operations in photo editing. To generate realistic composites, the appearances of foreground and background need to be adjusted to make them compatible. Previous approaches to harmonize composites have focused on learning statistical relationships between hand-crafted appearance features of the foreground and background, which is unreliable especially when the contents in the two layers are vastly different. In this work, we propose an end-to-end deep convolutional neural network for image harmonization, which can capture both the context and semantic information of the composite images during harmonization. We also introduce an efficient way to collect large-scale and high-quality training data that can facilitate the training process. Experiments on the synthesized dataset and real composite images show that the proposed network outperforms previous state-of-the-art methods.
The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.
This paper proposes a novel approach to generate multiple color palettes that reflect the semantics of input text and then colorize a given grayscale image according to the generated color palette. In contrast to existing approaches, our model can understand rich text, whether it is a single word, a phrase, or a sentence, and generate multiple possible palettes from it. For this task, we introduce our manually curated dataset called Palette-and-Text (PAT). Our proposed model called Text2Colors consists of two conditional generative adversarial networks: the text-to-palette generation networks and the palette-based colorization networks. The former captures the semantics of the text input and produce relevant color palettes. The latter colorizes a grayscale image using the generated color palette. Our evaluation results show that people preferred our generated palettes over ground truth palettes and that our model can effectively reflect the given palette when colorizing an image.
BRDF models are ubiquitous tools for the representation of material appearance. However, there is now an astonishingly large number of different models in practical use. Both a lack of BRDF model standardisation across implementations found in different renderers, as well as the often semantically different capabilities of various models, have grown to be a major hindrance to the interchange of production assets between different rendering systems. Current attempts to solve this problem rely on manually finding visual similarities between models, or mathematical ones between their functional shapes, which requires access to the shader implementation, usually unavailable in commercial renderers. We present a method for automatic translation of material appearance between different BRDF models, which uses an image-based metric for appearance comparison, and that delegates the interaction with the model to the renderer. We analyse the performance of the method, both with respect to robustness and visual differences of the fits for multiple combinations of BRDF models. While it is effective for individual BRDFs, the computational cost does not scale well for spatially-varying BRDFs. Therefore, we further present a parametric regression scheme that approximates the shape of the transformation function and generates a reduced representation which evaluates instantly and without further interaction with the renderer. We present respective visual comparisons of the remapped SVBRDF models for commonly used renderers and shading models, and show that our approach is able to extrapolate transformed BRDF parameters better than other complex regression schemes.
Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.