Interval partition evolutions with emigration related to the Aldous diffusion


Abstract in English

We construct a stationary Markov process corresponding to the evolution of masses and distances of subtrees along the spine from the root to a branch point in a conjectured stationary, continuum random tree-valued diffusion that was proposed by David Aldous. As a corollary this Markov process induces a recurrent extension, with Dirichlet stationary distribution, of a Wright-Fisher diffusion for which zero is an exit boundary of the coordinate processes. This extends previous work of Pal who argued a Wright-Fisher limit for the three-mass process under the conjectured Aldous diffusion until the disappearance of the branch point. In particular, the construction here yields the first stationary, Markovian projection of the conjectured diffusion. Our construction follows from that of a pair of interval partition-valued diffusions that were previously introduced by the current authors as continuum analogues of down-up chains on ordered Chinese restaurants with parameters (1/2,1/2) and (1/2,0). These two diffusions are given by an underlying Crump-Mode-Jagers branching process, respectively with or without immigration. In particular, we adapt the previous construction to build a continuum analogue of a down-up ordered Chinese restaurant process with the unusual parameters (1/2,-1/2), for which the underlying branching process has emigration.

Download