Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operational entanglement that is both computationally and experimentally accessible. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most, a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to $10^5$ particles.