No Arabic abstract
We introduce gauge theories based on a class of disconnected gauge groups, called principal extensions. Although in this work we focus on 4d theories with N=2 SUSY, such construction is independent of spacetime dimensions and supersymmetry. These groups implement in a consistent way the discrete gauging of charge conjugation, for arbitrary rank. Focusing on the principal extension of SU(N), we explain how many of the exact methods for theories with 8 supercharges can be put into practice in that context. We then explore the physical consequences of having a disconnected gauge group: we find that the Coulomb branch is generically non-freely generated, and the global symmetry of the Higgs branch is modified in a non-trivial way.
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The global symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the $U(1)_R$, low-energy EM duality group $SL(2,mathbb{Z})$, and the outer automorphism group of the flavor symmetry algebra, Out($F$). The theories that we construct are remarkable in many ways: (i) two of them have exceptional $F_4$ and $G_2$ flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $mathcal{N}=2$ SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $mathcal{N}=3$ SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specifically, we deal with de Sitter-type groups and show that a Riemann-Cartan first order gravity emerges. An analogy with quantum chromodynamics is also formulated. Under this analogy it is possible to associate a soft BRST breaking to a continuous deformation between both sectors of the theory, namely, ultraviolet and infrared. Moreover, instead of hadrons and glueballs, the physical observables are identified with the geometric properties of spacetime. Furthermore, Newton and cosmological constants can be determined from the dynamical content of the theory.
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the prepotential in terms of (quasi)-modular forms, thus resumming the instanton contributions. These results can be checked against the microscopic multi-instanton calculus in the case of classical algebras, but are valid also for the exceptional E6, E7, E8, F4 and G2 algebras, where direct computations are not available.
This is a brief introductory review of the AdS/CFT correspondence and of the ideas that led to its formulation. Emphasis is placed on dualities between conformal large $N$ gauge theories in 4 dimensions and string backgrounds of the form $AdS_5times X_5$. Attempts to generalize this correspondence to asymptotically free theories are also included.
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.