On set systems without a simplex-cluster and the Junta method


Abstract in English

A family ${A_{0},ldots,A_{d}}$ of $k$-element subsets of $[n]={1,2,ldots,n}$ is called a simplex-cluster if $A_{0}capcdotscap A_{d}=varnothing$, $|A_{0}cupcdotscup A_{d}|le2k$, and the intersection of any $d$ of the sets in ${A_{0},ldots,A_{d}}$ is nonempty. In 2006, Keevash and Mubayi conjectured that for any $d+1le klefrac{d}{d+1}n$, the largest family of $k$-element subsets of $[n]$ that does not contain a simplex-cluster is the family of all $k$-subsets that contain a given element. We prove the conjecture for all $kgezeta n$ for an arbitrarily small $zeta>0$, provided that $nge n_{0}(zeta,d)$. We call a family ${A_{0},ldots,A_{d}}$ of $k$-element subsets of $[n]$ a $(d,k,s)$-cluster if $A_{0}capcdotscap A_{d}=varnothing$ and $|A_{0}cupcdotscup A_{d}|le s$. We also show that for any $zeta nle klefrac{d}{d+1}n$ the largest family of $k$-element subsets of $[n]$ that does not contain a $(d,k,(frac{d+1}{d}+zeta)k)$-cluster is again the family of all $k$-subsets that contain a given element, provided that $nge n_{0}(zeta,d)$. Our proof is based on the junta method for extremal combinatorics initiated by Dinur and Friedgut and further developed by Ellis, Keller, and the author.

Download